Incretins today: multiple effects and therapeutic potential
https://doi.org/10.14341/DM9841
Abstract
Glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1) are the incretin hormones initially discovered in the 1960s. GIP and GLP-1 have gained great scientific interest due to their properties in increasing insulin secretion and lowering blood glucose levels. The study of these incretin hormones has progressed substantially in recent decades, in that their systemic effects has begun to be actively discussed. In particular, incretins are involved in the pathogenesis of obesity and non-alcoholic fatty liver disease. Moreover, incretins are able to improve cognitive function, suppress the formation of β-amyloid plaques and provide an oncoprotective effect. Recent data show promising oncoprotective effect of GLP-1 agonists on prostate and breast cancer.
This review provides systematisation of recent data on the role and mechanisms of action of incretin hormones on carbohydrate metabolism, as well as effects not related to glucose homeostasis, which contributes to a better understanding of potential vectors for the development of incretinotropic therapy. In addition, this review offers insight into pathogenic prerequisites and highlights the current issues in creating innovative polyagonists for treatment of type 2 diabetes mellitus.
About the Authors
Oksana V. TsygankovaInstitution of Higher Education Novosibirsk State Medical; Research Institute of Therapy and Preventive Medicine, branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation
ScD, associate professor
Varvara V. Veretyuk
City Outpatient Clinic No.20
Russian Federation
internist
Alexander S. Ametov
Russian Medical Academy of Continuous Professional Education
Russian Federation
MD, PhD, Professor
References
1. Schwartz SS, Epstein S, Corkey BE, et al. The Time Is Right for a New Classification System for Diabetes: Rationale and Implications of the beta-Cell-Centric Classification Schema. Diabetes Care. 2016;39(2):179-186. doi: 10.2337/dc15-1585
2. Schwartz SS, Epstein S, Corkey BE, et al. A Unified Pathophysiological Construct of Diabetes and its Complications. Trends Endocrinol Metab. 2017;28(9):645-655. doi: 10.1016/j.tem.2017.05.005
3. Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773-795. doi: 10.2337/db09-9028
4. Modlin IM, Kidd M, Farhadi J. Bayliss and Starling and the nascence of endocrinology. Regul Pept. 2000;93(1-3):109-123. doi: 10.1016/s0167-0115(00)00182-8
5. Tata JR. One hundred years of hormones. EMBO Rep. 2005;6(6):490-496. doi: 10.1038/sj.embor.7400444
6. Yabe D, Seino Y. Two incretin hormones GLP-1 and GIP: comparison of their actions in insulin secretion and beta cell preservation. Prog Biophys Mol Biol. 2011;107(2):248-256. doi: 10.1016/j.pbiomolbio.2011.07.010
7. Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60(4):470-512. doi: 10.1124/pr.108.000604
8. Deacon CF, Ahren B. Physiology of incretins in health and disease. Rev Diabet Stud. 2011;8(3):293-306. doi: 10.1900/RDS.2011.8.293
9. Шестакова Е.А. Инкретиновая и «Антиинкретиновая» системы в патогенезе сахарного диабета 2 типа: факты и гипотезы // Сахарный диабет. — 2011. — Т. 14. — №3. — С. 26-29. [Shestakova E.A. New glance at pathogenesis of type 2 diabetes mellitus: incretin and antiincretin systems. Diabetes mellitus. 2011;14(3):26-29. (In Russ.)] doi: 10.14341/2072-0351-6220
10. Whalley NM, Pritchard LE, Smith DM, White A. Processing of proglucagon to GLP-1 in pancreatic alpha-cells: is this a paracrine mechanism enabling GLP-1 to act on beta-cells? J Endocrinol. 2011;211(1):99-106. doi: 10.1530/JOE-11-0094
11. Ahren B. Incretin dysfunction in type 2 diabetes: clinical impact and future perspectives. Diabetes Metab. 2013;39(3):195-201. doi: 10.1016/j.diabet.2013.03.001
12. Ahren B, Carr RD, Deacon CF. Incretin hormone secretion over the day. Vitam Horm. 2010;84:203-220. doi: 10.1016/B978-0-12-381517-0.00007-2
13. Vollmer K, Holst JJ, Baller B, et al. Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance. Diabetes. 2008;57(3):678-687. doi: 10.2337/db07-1124
14. Holst JJ, Knop FK, Vilsboll T, et al. Loss of incretin effect is a specific, important, and early characteristic of type 2 diabetes. Diabetes Care. 2011;34 Suppl 2:S251-257. doi: 10.2337/dc11-s227
15. Gentilcore D, Chaikomin R, Jones KL, et al. Effects of fat on gastric emptying of and the glycemic, insulin, and incretin responses to a carbohydrate meal in type 2 diabetes. J Clin Endocrinol Metab. 2006;91(6):2062-2067. doi: 10.1210/jc.2005-2644
16. Шестакова Е.А., Ильин А.В., Шестакова М.В., Дедов И.И. Глюкозозависимый инсулинотропный полипептид – новое звено в развитии ожирения // Ожирение и метаболизм. — 2015. — Т. 12. — №1. — С. 16-19. [Shestakova EA, Il'in AV, Shestakova MV, Dedov II. Glucose-dependent insulinotropic polypeptide - a new link in the development of obesity. Obesity and metabolism. 2015;12(1):16-19. (In Russ.)] doi: 10.14341/OMET2015116-19
17. Шестакова Е.А. Изучение факторов, влияющих на секрецию инкретинов у лиц с различными нарушениями углеводного обмена: Дис. … канд. мед. наук. — М.; 2014. 103 с. [Shestakova EA. Izuchenie faktorov, vliyayushchikh na sekretsiyu inkretinov u lits s razlichnymi narusheniyami uglevodnogo obmena. [dissertation] Moscow; 2014. (In Russ.)]
18. Hansen KB, Vilsboll T, Bagger JI, et al. Impaired incretin-induced amplification of insulin secretion after glucose homeostatic dysregulation in healthy subjects. J Clin Endocrinol Metab. 2012;97(4):1363-1370. doi: 10.1210/jc.2011-2594
19. Саприна Т.В., Тимохина Е.С., Мусина Н.Н., и др. Панкреатические и экстрапанкреатические эффекты инкретинов и перспективы изучения энтероинсулярной гормональной системы у беременных женщин при гестационном нарушении углеводного обмена // Бюллетень сибирской медицины. — 2013. — Т. 12. — №3. — С. 132-147. [Saprina TV, Timokhina YS, Musina NN, et al. Pancreatic and extra-pancreatic effects of incretins and perspectives for studying enteroinsulin hormonal system during gestational disorder of carbohydrate metabolism. Bulletin of Siberian medicine. 2013;12(3):132-147. (In Russ.)]
20. Meier JJ, Nauck MA. Is the diminished incretin effect in type 2 diabetes just an epi-phenomenon of impaired beta-cell function? Diabetes. 2010;59(5):1117-1125. doi: 10.2337/db09-1899
21. Poitout V. Lipotoxicity impairs incretin signalling. Diabetologia. 2013;56(2):231-233. doi: 10.1007/s00125-012-2788-6
22. Kang ZF, Deng Y, Zhou Y, et al. Pharmacological reduction of NEFA restores the efficacy of incretin-based therapies through GLP-1 receptor signalling in the beta cell in mouse models of diabetes. Diabetologia. 2013;56(2):423-433. doi: 10.1007/s00125-012-2776-x
23. Kodama S, Fujihara K, Ishiguro H, et al. Quantitative Relationship Between Cumulative Risk Alleles Based on Genome-Wide Association Studies and Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis. J Epidemiol. 2018;28(1):3-18. doi: 10.2188/jea.JE20160151
24. Gudmundsdottir V, Pedersen HK, Allebrandt KV, et al. Integrative network analysis highlights biological processes underlying GLP-1 stimulated insulin secretion: A DIRECT study. PLoS One. 2018;13(1):e0189886. doi: 10.1371/journal.pone.0189886
25. Knop FK, Vilsboll T, Hojberg PV, et al. Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state? Diabetes. 2007;56(8):1951-1959. doi: 10.2337/db07-0100
26. Miyawaki K, Yamada Y, Ban N, et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med. 2002;8(7):738-742. doi: 10.1038/nm727
27. Althage MC, Ford EL, Wang S, et al. Targeted ablation of glucose-dependent insulinotropic polypeptide-producing cells in transgenic mice reduces obesity and insulin resistance induced by a high fat diet. J Biol Chem. 2008;283(26):18365-18376. doi: 10.1074/jbc.M710466200
28. McClean PL, Irwin N, Cassidy RS, et al. GIP receptor antagonism reverses obesity, insulin resistance, and associated metabolic disturbances induced in mice by prolonged consumption of high-fat diet. Am J Physiol Endocrinol Metab. 2007;293(6):E1746-1755. doi: 10.1152/ajpendo.00460.2007
29. Fulurija A, Lutz TA, Sladko K, et al. Vaccination against GIP for the treatment of obesity. PLoS One. 2008;3(9):e3163. doi: 10.1371/journal.pone.0003163
30. Kim SJ, Nian C, Karunakaran S, et al. GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis. PLoS One. 2012;7(7):e40156. doi: 10.1371/journal.pone.0040156
31. Tsukiyama K, Yamada Y, Yamada C, et al. Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol Endocrinol. 2006;20(7):1644-1651. doi: 10.1210/me.2005-0187
32. Pereira M, Jeyabalan J, Jorgensen CS, et al. Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice. Bone. 2015;81:459-467. doi: 10.1016/j.bone.2015.08.006
33. Iepsen EW, Lundgren JR, Hartmann B, et al. GLP-1 Receptor Agonist Treatment Increases Bone Formation and Prevents Bone Loss in Weight-Reduced Obese Women. J Clin Endocrinol Metab. 2015;100(8):2909-2917. doi: 10.1210/jc.2015-1176
34. Driessen JH, Henry RM, van Onzenoort HA, et al. Bone fracture risk is not associated with the use of glucagon-like peptide-1 receptor agonists: a population-based cohort analysis. Calcif Tissue Int. 2015;97(2):104-112. doi: 10.1007/s00223-015-9993-5
35. Mabilleau G, Mieczkowska A, Chappard D. Use of glucagon-like peptide-1 receptor agonists and bone fractures: a meta-analysis of randomized clinical trials. J Diabetes. 2014;6(3):260-266. doi: 10.1111/1753-0407.12102
36. Duarte AI, Candeias E, Correia SC, et al. Crosstalk between diabetes and brain: glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration. Biochim Biophys Acta. 2013;1832(4):527-541. doi: 10.1016/j.bbadis.2013.01.008
37. Bradley DP, Kulstad R, Schoeller DA. Exenatide and weight loss. Nutrition. 2010;26(3):243-249. doi: 10.1016/j.nut.2009.07.008
38. Li Y, Perry T, Kindy MS, et al. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc Natl Acad Sci U S A. 2009;106(4):1285-1290. doi: 10.1073/pnas.0806720106
39. Li Y, Duffy KB, Ottinger MA, et al. GLP-1 receptor stimulation reduces amyloid-beta peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer's disease. J Alzheimers Dis. 2010;19(4):1205-1219. doi: 10.3233/JAD-2010-1314
40. Dalvi PS, Nazarians-Armavil A, Purser MJ, Belsham DD. Glucagon-like peptide-1 receptor agonist, exendin-4, regulates feeding-associated neuropeptides in hypothalamic neurons in vivo and in vitro. Endocrinology. 2012;153(5):2208-2222. doi: 10.1210/en.2011-1795
41. Muskiet MHA, Tonneijck L, Smits MM, et al. GLP-1 and the kidney: from physiology to pharmacology and outcomes in diabetes. Nat Rev Nephrol. 2017;13(10):605-628. doi: 10.1038/nrneph.2017.123
42. Mann JFE, Orsted DD, Brown-Frandsen K, et al. Liraglutide and Renal Outcomes in Type 2 Diabetes. N Engl J Med. 2017;377(9):839-848. doi: 10.1056/NEJMoa1616011
43. Nomiyama T, Kawanami T, Irie S, et al. Exendin-4, a GLP-1 receptor agonist, attenuates prostate cancer growth. Diabetes. 2014;63(11):3891-3905. doi: 10.2337/db13-1169
44. Iwaya C, Nomiyama T, Komatsu S, et al. Exendin-4, a Glucagonlike Peptide-1 Receptor Agonist, Attenuates Breast Cancer Growth by Inhibiting NF-kappaB Activation. Endocrinology. 2017;158(12):4218-4232. doi: 10.1210/en.2017-00461
45. Nakamura J, Kamiya H, Haneda M, et al. Causes of death in Japanese patients with diabetes based on the results of a survey of 45,708 cases during 2001-2010: Report of the Committee on Causes of Death in Diabetes Mellitus. J Diabetes Investig. 2017;8(3):397-410. doi: 10.1111/jdi.12645
46. Christensen M, Vedtofte L, Holst JJ, et al. Glucose-dependent insulinotropic polypeptide: a bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans. Diabetes. 2011;60(12):3103-3109. doi: 10.2337/db11-0979
47. Fosgerau K, Jessen L, Lind Tolborg J, et al. The novel GLP-1-gastrin dual agonist, ZP3022, increases beta-cell mass and prevents diabetes in db/db mice. Diabetes Obes Metab. 2013;15(1):62-71. doi: 10.1111/j.1463-1326.2012.01676.x
48. Тюренков И.Н., Куркин Д.В., Волотова Е.В., и др. Десять новых мишеней для разработки лекарственных средств для лечения СД2 и метаболического синдрома // Сахарный диабет. — 2015. — Т. 18. — №1. — С. 101-109. [Tyurenkov IN, Kurkin DV, Volotova EV, et al. Drug discovery for type 2 diabetes mellitus and metabolic syndrome: ten novel biological targets. Diabetes Mellitus. 2015;18(1):101-109. (In Russ.)] doi: 10.14341/DM20151101-109
49. Guo H, Fang C, Huang Y, et al. The efficacy and safety of DPP4 inhibitors in patients with type 1 diabetes: A systematic review and meta-analysis. Diabetes Res Clin Pract. 2016;121:184-191. doi: 10.1016/j.diabres.2016.08.022
50. Harris K, Boland C, Meade L, Battise D. Adjunctive therapy for glucose control in patients with type 1 diabetes. Diabetes Metab Syndr Obes. 2018;11:159-173. doi: 10.2147/DMSO.S141700
51. Арутюнова М.С., Глазунова А.М., Михалева О.В., и др. Негликемические эффекты инкретинов у пациентов с длительным течением сахарного диабета 1-го типа и хронической болезнью почек // Терапевтический Архив. — 2015. — №10. — С. 54-61. [Arutyunova MS, Glazunova AM, Mikhaleva OV, et al. Nonglycemic effects of incretins in patients with long-term type 1 diabetes mellitus and chronic kidney disease. Ter Arkh. 2015;(10):54-61. (In Russ.)] doi: 10.17116/terarkh2015871054-61.
52. Zheng SL, Roddick AJ, Aghar-Jaffar R, et al. Association Between Use of Sodium-Glucose Cotransporter 2 Inhibitors, Glucagon-like Peptide 1 Agonists, and Dipeptidyl Peptidase 4 Inhibitors With All-Cause Mortality in Patients With Type 2 Diabetes: A Systematic Review and Meta-analysis. JAMA. 2018;319(15):1580-1591. doi: 10.1001/jama.2018.3024
53. Day JW, Ottaway N, Patterson JT, et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol. 2009;5(10):749-757. doi: 10.1038/nchembio.209
54. Brandt SJ, Gotz A, Tschop MH, Muller TD. Gut hormone polyagonists for the treatment of type 2 diabetes. Peptides. 2018;100:190-201. doi: 10.1016/j.peptides.2017.12.021
55. Finan B, Ma T, Ottaway N, et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med. 2013;5(209):209ra151. doi: 10.1126/scitranslmed.3007218
56. Finan B, Yang B, Ottaway N, et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med. 2015;21(1):27-36. doi: 10.1038/nm.3761
57. Choi IY, Lee JS, Kim JK, et al. Potent body weight loss and efficacy in a NASH animal model by a novel long-acting GLP-1/Glucagon/GIP triple-agonist (HM15211). In: Proceedings of the American Diabetes Association’s (ADA) 77th Scientific Sessions; 2017 Jun 9-13, San Diego.
58. Yabe D, Seino Y. Two incretin hormones GLP-1 and GIP: comparison of their actions in insulin secretion and beta cell preservation. Prog Biophys Mol Biol. 2011;107(2):248-256. doi: 10.1016/j.pbiomolbio.2011.07.010
59. Gault VA, Martin CM, Flatt PR, et al. Xenin-25[Lys13PAL]: a novel long-acting acylated analogue of xenin-25 with promising antidiabetic potential. Acta Diabetol. 2015;52(3):461-471. doi: 10.1007/s00592-014-0681-0
60. Gault VA, Martin CM, Flatt PR, et al. Xenin-25[Lys13PAL]: a novel long-acting acylated analogue of xenin-25 with promising antidiabetic potential. Acta Diabetol. 2015;52(3):461-471. doi: 10.1007/s00592-014-0681-0
Supplementary files
|
1. Fig. 1. Biological effects of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1. Graphic elements of Servier Medical Art, https://smart.servier.com (adapted [6, 17, 19, 27]). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(898KB)
|
Indexing metadata ▾ |
|
2. Fig. 2. Polygonists of intestinal hormones in the treatment of type 2 diabetes (adapted [54]). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(169KB)
|
Indexing metadata ▾ |
|
3. Fig. 3. Diagram of the physiological effects of multiagonists that affect the receptors of glucagon-like peptide-1 / glucagon, glucagon-like peptide-1 / glucose-dependent insulinotropic polypeptide, glucagon-like peptide-1 / glucose-dependent insulinotropic polypeptide / glucagon (adapted [54]). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(349KB)
|
Indexing metadata ▾ |
Review
For citations:
Tsygankova O.V., Veretyuk V.V., Ametov A.S. Incretins today: multiple effects and therapeutic potential. Diabetes mellitus. 2019;22(1):70-78. (In Russ.) https://doi.org/10.14341/DM9841

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).