Tauopathy and cognitive impairment in experimental diabetes mellitus
https://doi.org/10.14341/2072-0351-5842
Abstract
Currently, diabetes mellitus (DM) is the most common metabolic disorder, which is manifested by hyperglycemia and leads to vascular and cognitive impairment. Mechanisms of cognitive dysfunction in patients with DM remain highly unclear, thus complicating the search for effective strategies for the prevention and treatment of dementia. Recently, scientists have discussed the issues regarding the relationship between DM and Alzheimer’s disease (AD), such as risk factors that trigger the cascade of pathological reactions. Patients with DM show an increased risk of developing AD. Similarly, patients with AD have been shown to have impaired insulin and glucose metabolism. Both these diseases have common nosology, pathology and biochemical basics, including oxidative stress, formation of advanced glycation end products, dysregulation of glucose metabolism and altered insulin signaling pathways. The microtubule-associated tau protein is involved in one of the causative mechanisms underlying the development of AD. We provide an overview of the major domestic and foreign data analyses regarding tau protein and the development of cognitive disorders in experimental DM.
About the Authors
Mariia V. MatveevaSiberian State Medical University
Russian Federation
MD, PhD
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи
Yulia G. SamoiIova
Siberian State Medical University
Russian Federation
MD, PhD, Professor
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи
Natalia G. Zhukova
Siberian State Medical University
Russian Federation
MD, PhD, Professor
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи
Oksana A. Oleynik
Siberian State Medical University
Russian Federation
MD, PhD, associate professor
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи
Maria A. Rotkank
Siberian State Medical University
Russian Federation
assistant lecturer
Competing Interests:
Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи
References
1. Goedert M, Wischik CM, Crowther RA, et al. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc. Natl. Acad. Sci.. 1988;85(11):4051-4055. doi: 10.1073/pnas.85.11.4051
2. Rockenstein E, Torrance M, Adame A, et al. Neuroprotective effects of regulators of the glycogen synthase kinase-3beta signaling pathway in a transgenic model of Alzheimer's disease are associated with reduced amyloid precursor protein phosphorylation. J Neurosci. 2007;27(8):1981-1991. doi: 10.1523/JNEUROSCI.4321-06.2007
3. Asano T, Fujishiro M, Kushiyama A, et al. Role of Phosphatidylinositol 3-Kinase Activation on Insulin Action and Its Alteration in Diabetic Conditions. Biol Pharm Bull. 2007;30(9):1610-1616. doi: 10.1248/bpb.30.1610
4. Querfurth HW, LaFerla FM. Alzheimer's disease. N Engl J Med. 2010;362(4):329–344. doi: 10.1056/NEJMra0909142
5. El Khoury NB, Gratuze M, Papon MA, et al. Insulin dysfunction and Tau pathology. Front Cell Neurosci. 2014;8:22. doi: 10.3389/fncel.2014.00022
6. Buée L, Bussière T, Buée-Scherrer V, et al. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev. 2000;33(1):95-130. doi: 10.1016/s0165-0173(00)00019-9
7. Боголепова А.Н. Болезнь Альцгеймера и сахарный диабет. Когнитивные нарушения и деменция. // Медицинский совет. – 2015. – №18. – С. 36-40. [Bogolepova AN. Alzheimer’s Disease and diabetes mellitus. Cognitve impairement and dementia. Meditsinskiy sovet. 2015;(18):36-40 (in Russ.)]
8. Пономарёв В.В. Нейродегенеративные заболевания: настоящее и будущее. // Медицинские новости. – 2007. – №5. – С. 23-28. [Ponomaryov VV. Neurodegenerative diseases: Presentand Future. Medicinskie novosti. 2007;(5):23-28 (in Russ.)]
9. Chen YG. Specific tau phosphorylation sites in hippocampus correlate with impairment of step-down inhibitory avoidance task in rats. Behav Brain Res. 2005;158(2):277-284. doi: 10.1016/j.bbr.2004.09.007
10. Le Freche H, Brouillette J, Fernandez-Gomez FJ, et al. Tau phosphorylation and sevoflurane anesthesia: an association to postoperative cognitive impairment. Anesthesiology. 2012;116(4):779-787. doi: 10.1097/ALN.0b013e31824be8c7
11. Wang JZ, Liu F. Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol. 2008;85(2):148-175. doi: 10.1016/j.pneurobio.2008.03.002
12. Tracy TE, Gan L. Acetylated tau in Alzheimer's disease: An instigator of synaptic dysfunction underlying memory loss: Increased levels of acetylated tau blocks the postsynaptic signaling required for plasticity and promotes memory deficits associated with tauopathy. Bioessays. 2017;39(4). doi: 10.1002/bies.201600224
13. Карпова О.В., Смоленцева И.Г., Амосова Н.А. Реабилитация больных на ранней стадии болезни Паркинсона // Вестник восстановительной медицины. – 2014. – №3. – С. 51-52. [Karpova OV, Smolentseva IG, Amosova NA. The rehabilitation of patients with early Parkinson's disease. Vestnik vosstanovitel'noi meditsiny. 2014;(3): 51-52. (in Russ.)]
14. Hatch RJ, Wei Y, Xia D, Gotz J. Hyperphosphorylated tau causes reduced hippocampal CA1 excitability by relocating the axon initial segment. Acta Neuropathol. 2017;133(5):717-730. doi: 10.1007/s00401-017-1674-1
15. Boekhoorn K, Terwel D, Biemans B, et al. Improved long-term potentiation and memory in young tau-P301L transgenic mice before onset of hyperphosphorylation and tauopathy. J Neurosci. 2006;26(13):3514-3523. doi: 10.1523/JNEUROSCI.5425-05.2006
16. Chu J, Lauretti E, Pratico D. Caspase-3-dependent cleavage of Akt modulates tau phosphorylation via GSK3beta kinase: implications for Alzheimer's disease. Mol Psychiatry. 2017. doi: 10.1038/mp.2016.214
17. Иванова С.А., Лосенков И.С., Бохан Н.А. Роль киназы гликогенсинтазы-3 в патогенезе психических расстройств. // Журнал неврологии и психиатрии им. С.С. Корсакова. – 2014. – Т. 114. – №6. – С. 93-100. [Ivanova SA, Losenkov IS, Bohan NA. Role of glycogen synthase-3 kinase in the pathogenesis of psychiatric disorders. Zhurnal nevrologii i psihiatrii im. S.S. Korsakova. 2014;114(6): 93-100 (in Russ.)]
18. Enman NM, Unterwald EM. Inhibition of GSK3 attenuates amphetamine-induced hyperactivity and sensitization in the mouse. Behavioural Brain Research. 2012;231(1):217-225. doi: 10.1016/j.bbr.2012.03.027
19. Saltiel AR. New Perspectives into the Molecular Pathogenesis and Treatment of Type 2 Diabetes. Cell. 2001;104(4):517-529. doi: 10.1016/s0092-8674(01)00239-2
20. Abbondante S, Baglietto-Vargas D, Rodriguez-Ortiz CJ, et al. Genetic Ablation of Tau Mitigates Cognitive Impairment Induced by Type 1 Diabetes. The American Journal of Pathology. 2014;184(3):819-826. doi: 10.1016/j.ajpath.2013.11.021
21. Brabley CA, Peineau S, Taghibiglou C, et al. A pivotal role of GSK-3 in synaptic plasticity. Frontiers in Molecular Neuroscience.2012; 5: 16-26.
22. Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci. 2005;22(8):1942-1950. doi: 10.1111/j.1460-9568.2005.04391.x
23. Malone JI. Diabetic Central Neuropathy: CNS Damage Related to Hyperglycemia. Diabetes. 2016;65(2):355-357. doi: 10.2337/dbi15-0034
24. Полозова Т.М., Шаповалов Д.Л. Когнитивные нарушения при сахарном диабете второго типа // Современная терапия психических расстройств. – 2015. – №2. – С.11-18. [Polozova TM, Shapovalov DL. Cognitive impairment in diabetes mellitus type 2. Sovremennaya terapiya psikhicheskikh rasstroistv. 2015;(2):11-18 (in Russ.)]
25. Ryan CM, Williams TM. Effects of insulin-dependent diabetes on learning and memory efficiency in adults. J Clin Exp Neuropsychol. 1993;15(5):685-700. doi: 10.1080/01688639308402589
26. Münch G, Cunningham AM, Riederer P, Braak E. Advanced glycation endproducts are associated with Hirano bodies in Alzheimer's disease. Brain Research. 1998;796(1-2):307-310. doi: 10.1016/s0006-8993(98)00328-x
27. de la Monte SM, Wands JR. Alzheimer's disease is type 3 diabetes—evidence reviewed. Journal of diabetes science and technology. 2008;2(6):1101-1113.
28. Ouwens DM, van Duinkerken E, Schoonenboom SN, et al. Cerebrospinal fluid levels of Alzheimer's disease biomarkers in middle-aged patients with type 1 diabetes. Diabetologia. 2014;57(10):2208-2214. doi: 10.1007/s00125-014-3333-6
29. Biessels GJ, Staekenborg S, Brunner E, et al. Risk of dementia in diabetes mellitus: a systematic review. The Lancet Neurology. 2006;5(1):64-74. doi: 10.1016/s1474-4422(05)70284-2
30. Unger JW, Moss AM, Livingston JN. Immunohistochemical localization of insulin receptors and phosphotyrosine in the brainstem of the adult rat. Neuroscience. 1991;42(3):853-861. doi: 10.1016/0306-4522(91)90049-t
31. E. González-Reyes R, Aliev G, Avila-Rodrigues M, E. Barreto G. Alterations in Glucose Metabolism on Cognition: A Possible Link Between Diabetes and Dementia. Current Pharmaceutical Design. 2016;22(7):812-818. doi: 10.2174/1381612822666151209152013
32. Abbondante S, Baglietto-Vargas D, Rodriguez-Ortiz CJ, et al. Genetic ablation of tau mitigates cognitive impairment induced by type 1 diabetes. Am J Pathol. 2014;184(3):819-826. doi: 10.1016/j.ajpath.2013.11.021
33. Lu FP, Lin KP, Kuo HK. Diabetes and the risk of multi-system aging phenotypes: a systematic review and meta-analysis. PLoS One. 2009;4(1):e4144. doi: 10.1371/journal.pone.0004144
34. Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci. 2004;29(2):95-102. doi: 10.1016/j.tibs.2003.12.004
35. Jolivalt CG, Lee CA, Beiswenger KK, et al. Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer's disease and correction by insulin. J Neurosci Res. 2008;86(15):3265-3274. doi: 10.1002/jnr.21787
36. Desrocher M, Rovet J. Neurocognitive Correlates of Type 1 Diabetes Mellitus in Childhood. Child Neuropsychol. 2004;10(1):36-52. doi: 10.1076/chin.10.1.36.26241
37. Manschot SM, Brands AMA, van der Grond J, et al. Brain Magnetic Resonance Imaging Correlates of Impaired Cognition in Patients With Type 2 Diabetes. Diabetes. 2006;55(4):1106-1113. doi: 10.2337/diabetes.55.04.06.db05-1323
38. Qu Z, Jiao Z, Sun X, et al. Effects of streptozotocin-induced diabetes on tau phosphorylation in the rat brain. Brain Res. 2011;1383:300-306. doi: 10.1016/j.brainres.2011.01.084
39. Hoffman WH, Artlett CM, Zhang W, et al. Receptor for advanced glycation end products and neuronal deficit in the fatal brain edema of diabetic ketoacidosis. Brain Res. 2008;1238:154-162. doi: 10.1016/j.brainres.2008.08.041
40. Jolivalt CG, Hurford R, Lee CA, et al. Type 1 diabetes exaggerates features of Alzheimer's disease in APP transgenic mice. Exp Neurol. 2010;223(2):422-431. doi: 10.1016/j.expneurol.2009.11.005
41. Li J, Deng J, Sheng W, Zuo Z. Metformin attenuates Alzheimer's disease-like neuropathology in obese, leptin-resistant mice. Pharmacol Biochem Behav. 2012;101(4):564-574. doi: 10.1016/j.pbb.2012.03.002
42. Jung HJ, Kim YJ, Eggert S, et al. Age-dependent increases in tau phosphorylation in the brains of type 2 diabetic rats correlate with a reduced expression of p62. Exp Neurol. 2013;248:441-450. doi: 10.1016/j.expneurol.2013.07.013
43. Kahn CR, White MF, Shoelson SE, et al. The Insulin Receptor and Its Substrate: Molecular Determinants of Early Events in Insulin Action. Recent ProgHorm Res 1993:291-339. doi: 10.1016/b978-0-12-571148-7.50015-4
44. Rdzak GM, Abdelghany O. Does insulin therapy for type 1 diabetes mellitus protect against Alzheimer's disease? Pharmacotherapy. 2014;34(12):1317-1323. doi: 10.1002/phar.1494
45. Morales-Corraliza J, Wong H, Mazzella MJ, et al. Brain-Wide Insulin Resistance, Tau Phosphorylation Changes, and Hippocampal Neprilysin and Amyloid-beta Alterations in a Monkey Model of Type 1 Diabetes. J Neurosci. 2016;36(15):4248-4258. doi: 10.1523/JNEUROSCI.4640-14.2016
46. Sajan M, Hansen B, Ivey R, 3rd, et al. Brain Insulin Signaling Is Increased in Insulin-Resistant States and Decreases in FOXOs and PGC-1alpha and Increases in Abeta1-40/42 and Phospho-Tau May Abet Alzheimer Development. Diabetes. 2016;65(7):1892-1903. doi: 10.2337/db15-1428
47. Planel E, Tatebayashi Y, Miyasaka T, et al. Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms. J Neurosci. 2007;27(50):13635-13648. doi: 10.1523/JNEUROSCI.3949-07.2007
48. Clodfelder-Miller BJ, Zmijewska AA, Johnson GV, Jope RS. Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes. 2006;55(12):3320-3325. doi: 10.2337/db06-0485
49. Zhou Y, Zhao Y, Xie H, et al. Alteration in amyloid beta42, phosphorylated tau protein, interleukin 6, and acetylcholine during diabetes-accelerated memory dysfunction in diabetic rats: correlation of amyloid beta42 with changes in glucose metabolism. Behav Brain Funct. 2015;11:24. doi: 10.1186/s12993-015-0069-5
50. Kim B, Backus C, Oh S, Feldman EL. Hyperglycemia-induced tau cleavage in vitro and in vivo: a possible link between diabetes and Alzheimer's disease. J Alzheimers Dis. 2013;34(3):727-739. doi: 10.3233/JAD-121669
51. Papon MA, El Khoury NB, Marcouiller F, et al. Deregulation of protein phosphatase 2A and hyperphosphorylation of tau protein following onset of diabetes in NOD mice. Diabetes. 2013;62(2):609-617. doi: 10.2337/db12-0187
52. Abbondante S, Baglietto-Vargas D, Rodriguez-Ortiz CJ, et al. Genetic ablation of tau mitigates cognitive impairment induced by type 1 diabetes. Am J Pathol. 2014;184(3):819-826. doi: 10.1016/j.ajpath.2013.11.021
53. Qu Z, Jiao Z, Sun X, et al. Effects of streptozotocin-induced diabetes on tau phosphorylation in the rat brain. Brain Res. 2011;1383:300-306. doi: 10.1016/j.brainres.2011.01.084
Supplementary files
|
1. Рис. 1. Механизм когнитивных нарушений при СД и таупатии [5]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(21KB)
|
Indexing metadata ▾ |
Review
For citations:
Matveeva M.V., SamoiIova Yu.G., Zhukova N.G., Oleynik O.A., Rotkank M.A. Tauopathy and cognitive impairment in experimental diabetes mellitus. Diabetes mellitus. 2017;20(3):181-184. (In Russ.) https://doi.org/10.14341/2072-0351-5842

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).