Autologous hematopoietic stem cell transplantation as a method of immune prevention of type 1 diabetes mellitus: possibilities and prospects
https://doi.org/10.14341/DM13089
Abstract
Type 1 diabetes mellitus (DM) is one of the most common autoimmune disease that is treated with lifelong insulin therapy. Non-target indicators of glycemic control, which are observed in 71% of patients, lead to the formation and progression of diabetes complications, early disability and mortality. In this regard, the search for new approaches to the treatment and prevention of type 1 DM seems to be relevant. Various methods of immunological prophylaxis for the development of type 1 DM have been studied, in particular, the use of monoclonal antibodies. Thus, in November 2022, teplizumab was approved to slow down the clinical progression of the stage of type 1 DM. The prospects for the use of new options for islet cell transplantation are being studied — in June 2023, an allogeneic donor β-cell transplant obtained from the pancreas of donors after death was approved. Another pathogenetically substantiated method for the prevention and treatment of autoimmune diseases is high-dose immunosuppressive therapy with autologous hematopoietic stem cell transplantation (HDIT-HSCT). HDIT-HSCT demonstrated its effectiveness and cost-effectiveness in various clinical trials. This review provides up-to-date information on modern methods of immunological prophylaxis of type 1 DM.
About the Authors
M. E. ChernayaRussian Federation
Maria E. Chernaya, assistant
6-8 L’va Tolstogo street, 197022 St. Petersburg
Y. Sh. Khalimov
Russian Federation
Yuriy Sh. Khalimov, MD, PhD, Professor
Scopus Author ID: 55531165300
St. Petersburg
A. R. Volkova
Russian Federation
Anna R. Volkova, MD, PhD, Professor
Scopus Author ID: 57200116986
St. Petersburg
A. V. Lisker
Russian Federation
Anna V. Lisker, MD
St. Petersburg
A. A. Nersesyan
Russian Federation
Artem A. Nersesyan, student
St. Petersburg
A. D. Orlovskaya
Russian Federation
Anastasiya D. Orlovskaya, clinical resident
St. Petersburg
A. Y. Polushin
Russian Federation
Alexey Yu. Polushin, MD, PhD, Associate Professor
Scopus Author ID: 57195962540
St. Petersburg
Y. R. Zalyalov
Russian Federation
Yuri R. Zalyalov, MD, PhD
Scopus Author ID: 36497755400
St. Petersburg
A. D. Kulagin
Russian Federation
Alexander D. Kulagin, MD, PhD, Associate professor
ResearcherID: L-9795-2014;
Scopus Author ID: 7003340367
St. Petersburg
References
1. Magliano DJ, Boyko EJ; IDF Diabetes Atlas 10th edition scientific committee. IDF DIABETES ATLAS [Internet]. 10th edition. Brussels: International Diabetes Federation; 2021 [cited 2023 May 5]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK581934/
2. Tuomilehto J, Ogle GD, Lund-Blix NA, Stene LC. Update on Worldwide Trends in Occurrence of Childhood Type 1 Diabetes in 2020. Pediatr Endocrinol Rev. 2020;17(Suppl 1):198-209. doi: https://doi.org/10.17458/per.vol17.2020.tol.epidemiologychildtype1diabetes
3. Pang H, Luo S, Xiao Y, et al. Emerging Roles of Exosomes in T1DM. Front Immunol. 2020;11:593348. doi: https://doi.org/10.3389/fimmu.2020.593348
4. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010–2022. Diabetes Mellitus. 2023;26(2):104-123. (In Russ.). doi: https://doi.org/10.14341/DM13035
5. Kulzer B. Körperliche und psychische Folgeerkrankungen bei Diabetes mellitus [Physical and psychological long-term consequences of diabetes mellitus]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2022;65(4):503-510. doi: https://doi.org/10.1007/s00103-022-03517-y
6. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383(9911):69-82. doi: https://doi.org/10.1016/S0140-6736(13)60591-7
7. Willcox A, Gillespie KM. Histology of Type 1 Diabetes Pancreas. Methods Mol Biol. 2016; 1433:105-117. doi: https://doi.org/10.1007/7651_2015_287
8. Dedov II, Shestakova MV, Mayorov AY, et al. Standards of specialized diabetes care. Edited by Dedov II, Shestakova MV, Mayorov AY (10th edition). Diabetes mellitus. 2021;24(1S):1-221. (In Russ.). doi: https://doi.org/10.14341/DM1280
9. Wu FL, Wu EC, Chang YC, et al. Factors Affecting the Ability of People With Diabetes to Avoid Hypoglycemia. J Nurs Res. 2018;26(1):44-51. doi: https://doi.org/10.1097/JNR.0000000000000198
10. Lombardo C, Perrone VG, Amorese G, et al. Update on pancreatic transplantation on the management of diabetes. Minerva Med. 2017;108(5):405-418. doi: https://doi.org/10.23736/S0026-4806.17.05224-7
11. Chiang JL, Kirkman MS, Laffel LM, Peters AL. Type 1 Diabetes Sourcebook Authors. Type 1 diabetes through the life span: a position statement of the American Diabetes Association. Diabetes Care. 2014;37(7):2034-2054. doi: https://doi.org/10.2337/dc14-1140
12. fda.gov [Internet]. Lantidra [updated 2023 July 08; cited 2023 July 08]. Available from: https://www.fda.gov/vaccines-blood-biologics/lantidra
13. Yeh CC, Wang LJ, Mcgarrigle JJ, et al. Effect of Manufacturing Procedures on Human Islet Isolation from Donor Pancreata Standardized by the North American Islet Donor Score. Cell Transplantation. 2017;26(1):33-44. doi: https://doi.org/10.3727/096368916X692834
14. Couri CEB, Malmegrim KCR, Oliveira MC. New Horizons in the Treatment of Type 1 Diabetes: More Intense Immunosuppression and Beta Cell Replacement. Front Immunol. 2018;9:1086. doi: https://doi.org/10.3389/fimmu.2018.01086
15. Perdigoto AL, Preston-Hurlburt P, Clark P, et al. Treatment of type 1 diabetes with teplizumab: clinical and immunological follow-up after 7 years from diagnosis. Diabetologia. 2019;62(4):655-664. doi: https://doi.org/10.1007/s00125-018-4786-9
16. Guglielmi C, Williams SR, Del Toro R, Pozzilli P. Efficacy and safety of otelixizumab use in new-onset type 1 diabetes mellitus. Expert Opin Biol Ther. 2016;16(6):841-846. doi: https://doi.org/10.1080/14712598.2016.1180363
17. Rigby MR, Harris KM, Pinckney A, et al. Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. J Clin Invest. 2015;125(8):3285-3296. doi: https://doi.org/10.1172/JCI81722
18. Orban T, Bundy B, Becker DJ, et al. Costimulation modulation with abatacept in patients with recent-onset type 1 diabetes: follow-up 1 year after cessation of treatment. Diabetes Care. 2014;37(4):1069-1075. doi: https://doi.org/10.2337/dc13-0604
19. Pescovitz MD, Greenbaum CJ, Bundy B, et al. B-lymphocyte depletion with rituximab and β-cell function: two-year results. Diabetes Care. 2014;37(2):453-459. doi: https://doi.org/10.2337/dc13-0626
20. fda.gov [Internet]. FDA Approves First Drug That Can Delay Onset of Type 1 Diabetes [updated 2022 November 17; cited 2022 November 18]. Available from: https://www.fda.gov/news-events/pressannouncements/fda-approves-first-drug-can-delay-onset-type-1-diabetes
21. Herold KC, Bundy BN, Long SA, et al. An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes [published correction appears in N Engl J Med. 2020 Feb 6;382(6):586]. N Engl J Med. 2019;381(7):603-613. doi: https://doi.org/10.1056/NEJMoa1902226
22. Sims EK, Bundy BN, Stier K, et al. Teplizumab improves and stabilizes beta cell function in antibody-positive highrisk individuals. Sci Transl Med. 2021;13(583):eabc8980. doi: https://doi.org/10.1126/scitranslmed.abc8980
23. Тucker ME. With Type 1 Diabetes Delay Possible, Focus Now on Screening [Internet]. Medscape [updated 2022 November 30; cited 2022 December 1] Available from: https://www.medscape.com/viewarticle/984748
24. Zhao Y, Jiang Z, Zhao T, et al. Reversal of type 1 diabetes via islet β cell regeneration following immune modulation by cord blood-derived multipotent stem cells. BMC Med. 2012;10:3. doi: https://doi.org/10.1186/1741–7015-10-3
25. Loretelli C, Assi E, Seelam AJ, et al. Cell therapy for type 1 diabetes. Expert Opin Biol Ther. 2020;20(8):887-897. doi: https://doi.org/10.1080/14712598.2020.1748596
26. Izadi M, Sadr Hashemi Nejad A, Moazenchi M, et al. Mesenchymal stem cell transplantation in newly diagnosed type-1 diabetes patients: a phase I/II randomized placebocontrolled clinical trial. Stem Cell Res Ther. 2022;13(1):264. doi: https://doi.org/10.1186/s13287-022-02941-w
27. Loretelli C, Assi E, Seelam AJ, et al. Cell therapy for type 1 diabetes. Expert Opin Biol Ther. 2020;20(8):887-897. doi: https://doi.org/10.1080/14712598.2020.1748596
28. Carlsson PO, Schwarcz E, Korsgren O, Le Blanc K. Preserved β-cell function in type 1 diabetes by mesenchymal stromal cells. Diabetes. 2015;64(2):587-92. doi: https://doi.org/10.2337/db14-0656
29. Carroll KR, Katz JD. Restoring tolerance to β-cells in Type 1 diabetes: Current and emerging strategies. Cell Immunol. 2022;380:104593. doi: https://doi.org/10.1016/j.cellimm.2022.104593
30. Alexander T, Greco R. Hematopoietic stem cell transplantation and cellular therapies for autoimmune diseases: overview and future considerations from the Autoimmune Diseases Working Party (ADWP) of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant. 2022;57(7):1055-1062. doi: https://doi.org/10.1038/s41409-022-01702-w
31. Fiorina P, Voltarelli J, Zavazava N. Immunological applications of stem cells in type 1 diabetes. Endocr Rev. 2011;32(6):725-754. doi: https://doi.org/10.1210/er.2011-0008
32. Van Megen KM, van ‘t Wout ET, Forman SJ, Roep BO. A Future for Autologous Hematopoietic Stem Cell Transplantation in Type 1 Diabetes. Front Immunol. 2018;9:690. doi: https://doi.org/10.3389/fimmu.2018.00690
33. Effect of intensive therapy on residual beta-cell function in patients with type 1 diabetes in the diabetes control and complications trial. A randomized, controlled trial. The Diabetes Control and Complications Trial Research Group. Ann Intern Med. 1998;128(7):517-523. doi: https://doi.org/10.7326/0003-4819-128-7-199804010-00001
34. Snarski E, Szmurło D, Hałaburda K, et al. An economic analysis of autologous hematopoietic stem cell transplantation (AHSCT) in the treatment of new onset type 1 diabetes. Acta Diabetol. 2015;52(5):881-888. doi: https://doi.org/10.1007/s00592-015-0724-1
35. Polushin AYu, Zalyalov YuR, Totolyan NA, et al. High-dose immunosuppressive therapy with autologous hematopoietic stem cell transplantation in multiple sclerosis: a modern view of the method (review of literature). The Scientific Notes of Pavlov University. 2021;28(4):9–21. (In Russ). doi: https://doi.org/10.24884/1607-4181-2021-28-4-9-21
36. Kitagawa Y, Sakaguchi S. Molecular control of regulatory T cell development and function. Curr Opin Immunol. 2017;49:64-70. doi: https://doi.org/10.1016/j.coi.2017.10.002
37. Weinhaus AJ, Bhagroo NV, Brelje TC, Sorenson RL. Dexamethasone counteracts the effect of prolactin on islet function: implications for islet regulation in late pregnancy. Endocrinology. 2000;141(4):1384-1393. doi: https://doi.org/10.1210/endo.141.4.7409
38. Nuralieva NF, Yukina MYu, Troshina EA. Basic Immunopathogenic Mechanisms of Autoimmune Thyroid Disorders and Type 1 Diabetes Mellitus. Doctor.Ru. 2019;4(159): 49–53. (In Russ). doi: https://doi.org/10.31550/1727-2378-2019-159-4-49-53
39. Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol. 2019;15(11):635-650. doi: https://doi.org/10.1038/s41574-019-0254-y
40. Malmegrim KCR, Lima-Júnior JR, Arruda LCM, et al. Autologous Hematopoietic Stem Cell Transplantation for Autoimmune Diseases: From Mechanistic Insights to Biomarkers. Front Immunol. 2018;9:2602. doi: https://doi.org/10.3389/fimmu.2018.02602
41. Karnell FG, Lin D, Motley S, et al. Reconstitution of immune cell populations in multiple sclerosis patients after autologous stem cell transplantation. Clin Exp Immunol. 2017;189(3):268-278. doi: https://doi.org/10.1111/cei.12985
42. Massey JC, Sutton IJ, Ma DDF, Moore JJ. Regenerating Immunotolerance in Multiple Sclerosis with Autologous Hematopoietic Stem Cell Transplant. Front Immunol. 2018;9:410. doi: https://doi.org/10.3389/fimmu.2018.00410
43. Polushin AYu, Zalyalov YuR, Totolyan NA, et al. High-dose immunosuppressive therapy with autologous hematopoietic stem cell transplantation in multiple sclerosis: approaches to risk management. Annals of Clinical and Experimental Neurology. 2022;16(3): 53–64. (In Russ). doi: https://doi.org/10.54101/ACEN.2022.3.7
44. Sharrack B, Saccardi R, Alexander T, et al. Autologous haematopoietic stem cell transplantation and other cellular therapy in multiple sclerosis and immune-mediated neurological diseases: updated guidelines and recommendations from the EBMT Autoimmune Diseases Working Party (ADWP) and the Joint Accreditation Committee of EBMT and ISCT (JACIE). Bone Marrow Transplant. 2020;55(2):283-306. doi: https://doi.org/10.1038/s41409-019-0684-0
45. Davydova IYu, Valiev RK, Karseladze AI, et al. Prakticheskie rekomendatsii po lecheniyu pogranichnykh opukholei yaichnikov. Zlokachestvennye opukholi: Prakticheskie rekomendatsii RUSSCO. 2022;12(3s2):229-239. (In Russ). doi: https://doi.org/10.18027/2224-5057-2022-12-3s2-229-239
46. Burt RK, Loh Y, Pearce W, et al. Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. JAMA. 2008;299(8):925-936. doi: https://doi.org/10.1001/jama.299.8.925
47. Sizikova SA, Lisukov IA, Kulagin AD, et al. Vysokodoznaya immunosupressivnaya terapiya s autologichnoi transplantatsiei stvolovykh krovetvornykh kletok pri autoimmunnykh zabolevaniyakh. Terapevticheskii arkhiv. 2002;74(7):22-26. (In Russ).
48. Shevchenko YL, Novik AA, Kuznetsov AN, et al. Autologous hematopoietic stem cell transplantation in patients with multiple sclerosis: the results of the investigations carried out by russian cooperative group of cellular therapy. Neurological journal. 2008;13(2):11-18. (In Russ.)
49. Voltarelli JC, Couri CE, Stracieri AB, et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA. 2007;297(14):1568-1576. doi: https://doi.org/10.1001/jama.297.14.1568
50. Couri CE, Oliveira MC, Stracieri AB, et al. C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA. 2009;301(15):1573-1579. doi: https://doi.org/10.1001/jama.2009.470
51. Li L, Shen S, Ouyang J, et al. Autologous hematopoietic stem cell transplantation modulates immunocompetent cells and improves β-cell function in Chinese patients with new onset of type 1 diabetes. J Clin Endocrinol Metab. 2012;97(5):1729-1736. doi: https://doi.org/10.1210/jc.2011-2188
52. Xiang H, Chen H, Li F, et al. Predictive factors for prolonged remission after autologous hematopoietic stem cell transplantation in young patients with type 1 diabetes mellitus. Cytotherapy. 2015;17(11):1638-1645. doi: https://doi.org/10.1016/j.jcyt.2015.07.006
53. Cantú-Rodríguez OG, Lavalle-González F, Herrera-Rojas MÁ, et al. Long-Term Insulin Independence in Type 1 Diabetes Mellitus Using a Simplified Autologous Stem Cell Transplant. J Clin Endocrinol Metab. 2016;101(5):2141-2148. doi: https://doi.org/10.1210/jc.2015-2776
54. Ye L, Li L, Wan B, et al. Immune response after autologous hematopoietic stem cell transplantation in type 1 diabetes mellitus. Stem Cell Res Ther. 2017;8(1):90. doi: https://doi.org/10.1186/s13287-017-0542-1
55. Zhang J, Hu M, Wang B, et al. Comprehensive assessment of T-cell repertoire following autologous hematopoietic stem cell transplantation for treatment of type 1 diabetes using highthroughput sequencing. Pediatr Diabetes. 2018;19(7):1229-1237. doi: https://doi.org/10.1111/pedi.12728
56. Snarski E, Milczarczyk A, Torosian T, et al. Independence of exogenous insulin following immunoablation and stem cell reconstitution in newly diagnosed diabetes type I. Bone Marrow Transplant. 2011;46(4):562-566. doi: https://doi.org/10.1038/bmt.2010.147
57. Snarski E, Milczarczyk A, Hałaburda K, et al. Immunoablation and autologous hematopoietic stem cell transplantation in the treatment of new-onset type 1 diabetes mellitus: longterm observations. Bone Marrow Transplant. 2016;51(3):398-402. doi: https://doi.org/10.1038/bmt.2015.294
58. Malmegrim KC, de Azevedo JT, Arruda LC, et al. Immunological Balance Is Associated with Clinical Outcome after Autologous Hematopoietic Stem Cell Transplantation in Type 1 Diabetes. Front Immunol. 2017; 8:167. doi: https://doi.org/10.3389/fimmu.2017.00167
59. Zhang X, Ye L, Hu J, et al. Acute response of peripheral blood cell to autologous hematopoietic stem cell transplantation in type 1 diabetic patient. PLoS One. 2012;7(2): e31887. doi: https://doi.org/10.1371/journal.pone.0031887
60. Gu W, Hu J, Wang W, et al. Diabetic ketoacidosis at diagnosis influences complete remission after treatment with hematopoietic stem cell transplantation in adolescents with type 1 diabetes. Diabetes Care. 2012;35(7):1413-1419. doi: https://doi.org/10.2337/dc11-2161
61. Gu B, Miao H, Zhang J, et al. Clinical benefits of autologous haematopoietic stem cell transplantation in type 1 diabetes patients. Diabetes Metab. 2018;44(4):341-345. doi: https://doi.org/10.1016/j.diabet.2017.12.006
62. de Oliveira GL, Malmegrim KC, Ferreira AF, et al. Up-regulation of fas and fasL pro-apoptotic genes expression in type 1 diabetes patients after autologous haematopoietic stem cell transplantation. Clin Exp Immunol. 2012;168(3):291-302. doi: https://doi.org/10.1111/j.1365-2249.2012.04583.x
63. Shen S, Li L, Ouyang J, et al. Remission induced by autologous hematopoietic stem cell transplantation in one newly diagnosed type 1 diabetes patient with diabetic ketoacidosis: a case report. J Diabetes. 2012;4(4):359-361. doi: https://doi.org/10.1111/j.1753-0407.2012.00214.x
64. Snarski E, Torosian T, Paluszewska M, et al. Alleviation of exogenous insulin requirement in type 1 diabetes mellitus after immunoablation and transplantation of autologous hematopoietic stem cells. Pol Arch Med Wewn. 2009;119(6):422-426
Supplementary files
|
1. Рисунок 1. Развитие метода трансплантации гемопоэтических стволовых клеток при аутоиммунных заболеваниях. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(248KB)
|
Indexing metadata ▾ |
Review
For citations:
Chernaya M.E., Khalimov Y.Sh., Volkova A.R., Lisker A.V., Nersesyan A.A., Orlovskaya A.D., Polushin A.Y., Zalyalov Y.R., Kulagin A.D. Autologous hematopoietic stem cell transplantation as a method of immune prevention of type 1 diabetes mellitus: possibilities and prospects. Diabetes mellitus. 2024;27(3):277-286. (In Russ.) https://doi.org/10.14341/DM13089

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).