Preview

Diabetes mellitus

Advanced search

Insulin resistance and heart failure with preserved ejection fraction. Pathogenetic and therapeutic crossroads

https://doi.org/10.14341/DM12916

Abstract

Insulin resistance, which is a fundamental pathogenetic factor of prediabetes, is closely associated with abdominal obesity on the one hand and the development of cardiovascular diseases, heart failure (HF), on the other. The pathogenetic role of insulin resistance is multifaceted and consists in the acceleration of atherosclerosis, the formation of left ventricular myocardial hypertrophy, including through mechanisms that do not depend on blood pressure, as well as the development of its diastolic dysfunction. The latter is the starting point for starting HF with preserved ejection fraction (HFpEF).

Compared with patients with HF with reduced ejection fraction, the presence of HFpEF determines a higher frequency of hospitalizations not due to decompensation of heart failure, but due to concomitant diseases, such as destabilization of the course of arterial hypertension, decompensation of type 2 diabetes mellitus, curation of which, in general, has a greater impact in terms of improving prognosis. Thus, in patients with prediabetes and HFpEF, the correction of insulin resistance as the underlying cause and trigger of cardiometabolic disorders can potentially improve not only insulin-glucose homeostasis, but also the parameters of myocardial diastolic function. This literature review is devoted to the accumulated experience of using metformin as a «strategic» antidiabetic drug in HFpEF and considering potential new points of its application as a protector of the cardiovascular system.

About the Authors

O. V. Tsygankova
Research Institutе of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State Medical University
Russian Federation

Oksana V. Tsygankova, MD, PhD, Professor

Researcher ID: AAZ-2192-2020, Scopus Author ID: 16835397600, eLibrary SPIN: 1817-4484

Novosibirsk


Competing Interests:

Автор декларирует отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.



N. E. Evdokimova
Research Institutе of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Natalia E. Evdokimova, PhD student

Researcher ID: AAQ-2766-2021; Scopus Author ID: 57219415522; eLibrary SPIN: 6411-5230

175/1 B. Bogatkova street, 630089 Novosibirsk


Competing Interests:

Автор декларирует отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.



V. V. Veretyuk
Novosibirsk State Medical University
Russian Federation

Varvara V. Veretyuk

Researcher ID: T-9586-2017, Scopus Author ID: 57208568882 , eLibrary SPIN: 1718-1649

Novosibirsk


Competing Interests:

Автор декларирует отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.



L. D. Latyntseva
Research Institutе of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Lyudmila D. Latyntseva, PhD

eLibrary SPIN: 8647-6536

Novosibirsk


Competing Interests:

Автор декларирует отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.



A. S. Ametov
Russian Medical Academy of Continuing Professional Education
Russian Federation

Aleksander S. Ametov, MD, PhD, Professor

eLibrary SPIN: 9511-1413

Moscow


Competing Interests:

Автор декларирует отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.



References

1. Tsygankova OV, Veretyuk VV. Phenotypic clusters in heart failure with preserved and mid-range ejection fraction: new data and perspectives. Russian Journal of Cardiology. 2021;26(4):4436. (In Russ.). doi: https://doi.org/10.15829/1560-4071-2021-4436

2. Paulus W, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and Remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263-271. doi: https://doi.org/10.1016/j.jacc.2013.02.092

3. Russian Society of Cardiology (RSC). 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11):4083. (In Russ.). doi: https://doi.org/10.15829/1560-4071-2020-4083

4. Drapkina OM, Palatkina LO. New emphases on the study of the pathogenesis of chronic heart failure with preserved ejection fraction: focus on inflammatory markers. Rational Pharmacotherapy in Cardiology. 2014;10(3):317-321. (In Russ.)]. doi: https://doi.org/10.20996/1819-6446-2014-10-3-317-321

5. Pfeffer MA, Shah AM, Borlaug BA. Heart Failure With Preserved Ejection Fraction In Perspective. Circ Res. 2019;124(11):1598-1617. doi: https://doi.org/10.1161/CIRCRESAHA.119.313572

6. Vaisberg AR, Tarlovskaya EI, Fomin IV, et al. Carbohydrate metabolism disorders in patients with heart failure: data from the local registry. Russian Journal of Cardiology. 2021;26(3):4330. (In Russ.). doi: https://doi.org/10.15829/1560-4071-2021-4330

7. Yuryeva MYu, Dvoryashina IV. Prognostic value of glycemic variability in patients with decompensated chronic heart failure and diabetes mellitus. Kardiologiia. 2017;57(S4):38-46. (In Russ.). doi: https://doi.org/10.18087/cardio.2403

8. Ather S, Chan W, Bozkurt B, et al. Impact of Noncardiac Comorbidities on Morbidity and Mortality in a Predominantly Male Population with Heart Failure and Preserved versus Reduced Ejection Fraction. J Am Coll Cardiol. 2012;59(11):998-1005. doi: https://doi.org/10.1016/j.jacc.2011.11.040

9. Kristensen SL, Preiss D, Jhund PS, et al. Risk related to pre-diabetes mellitus and diabetes mellitus in heart failure with reduced ejection fraction. Circ Heart Fail. 2016;9:e002560. doi: https://doi.org/10.1161/CIRCHEARTFAILURE.115.002560

10. Arnold SV, de Lemos JA, Rosenson RS, et al. GOULD Investigators. Use of Guideline-Recommended Risk Reduction Strategies Among Patients With Diabetes and Atherosclerotic Cardiovascular Disease. Circulation. 2019;140(7):618-620. doi: https://doi.org/10.1161/CIRCULATIONAHA.119.041730

11. Jackson AM, Rørth R, Liu J, et al. Diabetes and pre-diabetes in patients with heart failure and preserved ejection fraction. Eur J Heart Fail. 2022;24(3):497-509. doi: https://doi.org/10.1002/ejhf.2403

12. Braunwald E. Diabetes, heart failure, and renal dysfunction: The vicious circles. Prog Cardiovasc Dis. 2019;62(4):298-302. doi: https://doi.org/10.1016/j.pcad.2019.07.003

13. Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Russian Journal of Cardiology. 2020;25(4):3839. (In Russ.). doi: https://doi.org/10.15829/1560-4071-2020-3839

14. Platonov DYu, Kostiuk TA, Brandt AI, Tsygankova OV. Comprehensive evaluation of preventive behavior related to cardiovascular diseases and their risk factors in patients with hypertensive disease and chronic coronary heart disease. Profilakticheskaya Meditsina. 2012;15(1):26-31. (In Russ.).

15. Dedov II, Shestakova MV, Mayorov AYu et al. Standards of specialized diabetes care. Diabetes Mellitus. 2021;24(S1):1-235 (In Russ.). doi: https://doi.org/10.14341/DM12802

16. Barbarash OL, Voyevoda MI, Galstyan GR, et al. Pre-diabetes as an interdisciplinary problem: definition, risks, approaches to the diagnostics and prevention of type 2 diabetes and cardiovascular complications. Russian Journal of Cardiology. 2019;(4):83-91. (In Russ.). doi: https://doi.org/10.15829/1560-4071-2019-4-83-91

17. Ritchie RH, Abel ED. Basic Mechanisms of Diabetic Heart Disease. Circ Res. 2020;126(11):1501-1525. doi: https://doi.org/10.1161/CIRCRESAHA.120.315913

18. Saotome M, Ikoma T, Hasan P, et al. Cardiac insulin resistance in heart failure: the role of mitochondrial dynamics. Int J Mol Sci. 2019;20(14):3552. doi: https://doi.org/10.3390/ijms20143552

19. Goldberg IJ, Trent CM, Schulze PC. Lipid metabolism and toxicity in the heart. Cell Metab. 2012;15(6):805-812. doi: https://doi.org/10.1016/j.cmet.2012.04.006

20. Lu T, Forgetta V, Yu OHY, et al. Polygenic risk for coronary heart disease acts through atherosclerosis in type 2 diabetes. Cardiovasc Diabetol. 2020;19(1):12. doi: https://doi.org/10.1186/s12933-020-0988-9

21. Diaz-Juarez J, Suarez JA, Dillmann WH, et al. Mitochondrial calcium handling and heart disease in diabetes mellitus. Biochim Biophys Acta Mol Basis Dis. 2021;1867(1):165984. doi: https://doi.org/10.1016/j.bbadis.2020.165984

22. Tentolouris A, Eleftheriadou I, Tzeravini E, et al. Endothelium as a therapeutic target in diabetes mellitus: From basic mechanisms to clinical practice. Curr Med Chem. 2020;27(7):1089-1131. doi: https://doi.org/10.2174/0929867326666190119154152

23. Popyhova EB, Stepanova TV, Lagutina DD, et al. The role of diabetes in the onset and development of endothelial dysfunction. Problems of Endocrinology. 2020;66(1):47-55. (In Russ.). doi: https://doi.org/10.14341/probl12212

24. Wong AK, AlZadjali MA, Choy AM, et al. Insulin resistance: a potential new target for therapy in patients with heart failure. Cardiovasc Ther. 2008;26(3):203-213. doi: https://doi.org/10.1111/j.1755-5922.2008.00053.x

25. Wong AK, Struthers AD, Choy AM, et al. Insulin sensitization therapy and the heart: focus on metformin and thiazolidinediones. Heart Fail Clin. 2012;8(4):539-550. doi: https://doi.org/10.1016/j.hfc.2012.06.002

26. Pandey A, LaMonte M, Klein L, et al. Relationship Between Physical Activity, Body Mass Index, and Risk of Heart Failure. J Am Coll Cardiol. 2017;69(9):1129-1142. doi: https://doi.org/10.1016/j.jacc.2016.11.081

27. Dedov II, Shestakova MV, Melnichenko GA, et al. Interdisciplinary clinical practice guidelines «Management of obesity and its comorbidities». Obesity and metabolism. 2021;18(1):5-99. (In Russ.). doi: https://doi.org/10.14341/omet12714

28. Obokata M, Reddy YNV, Pislaru SV, et al. Evidence Supporting the Existence of a Distinct Obese Phenotype of Heart Failure With Preserved Ejection Fraction. Circulation. 2017;136(1):6-19. doi: https://doi.org/10.1161/CIRCULATIONAHA.116.026807

29. Bentley-Lewis R, Adler GK, Perlstein T, et al. Body Mass Index Predicts Aldosterone Production in Normotensive Adults on a High-Salt Diet. J Clin Endocrinol Metab. 2007;92(11):4472-4475. doi: https://doi.org/10.1210/jc.2007-1088

30. Vatutin NT, Shevelyok AN. Relationship between blood aldosterone and somatometric parameters in patients with chronic heart failure and preserved ejection fraction of left ventricle. Clin Med (Russian Journal). 2016;94(4):265-269. doi: https://doi.org/10.18821/0023-2149-2016-94-4-265-269

31. Borlaug BA, Carter RE, Melenovsky V, et al. Percutaneous pericardial resection: a novel potential treatment for heart failure with preserved ejection fraction. Circ Heart Fail. 2017;10(4):e003612. doi: https://doi.org/10.1161/CIRCHEARTFAILURE.116.0036

32. Achike FI, To N-HP, Wang H, Kwan C-Y. Obesity, metabolic syndrome, adipocytes and vascular function: A holistic viewpoint. Clin Exp Pharmacol Physiol. 2011;38(1):1-10. doi: https://doi.org/10.1111/j.1440-1681.2010.05460.x

33. Packer M. Leptin-Aldosterone-Neprilysin Axis. Circulation. 2018;137(15):1614-1631. doi: https://doi.org/10.1161/CIRCULATIONAHA.117.032474

34. Rhee EJ, Kwon H, Park SE, et al. Associations among Obesity Degree, Glycemic Status, and Risk of Heart Failure in 9,720,220 Korean Adults. Diabetes Metab J. 2020;44(4):592-601. doi: https://doi.org/10.4093/dmj.2019.0104.

35. Liu L, Feng J, Zhang G, et al. Visceral adipose tissue is more strongly associated with insulin resistance than subcutaneous adipose tissue in Chinese subjects with pre-diabetes. Curr Med Res Opin. 2018;34(1):123-129. doi: https://doi.org/10.1080/03007995.2017.1364226

36. Rao VN, Fudim M, Mentz RJ, et al. Regional adiposity and heart failure with preserved ejection fraction. Eur J Heart Fail. 2020;22(9):1540-1550. doi: https://doi.org/10.1002/ejhf.1956

37. Gruzdeva O, Borodkina D, Uchasova E, et al. Localization of fat depots and cardiovascular risk. Lipids Health Dis. 2018;17(1):218. doi: https://doi.org/10.1186/s12944-018-0856-8

38. Rao VN, Zhao D, Allison MA, et al. Adiposity and incident heart failure and its subtypes. JACC Hear Fail. 2018;6(12):999-1007. doi: https://doi.org/10.1016/j.jchf.2018.07.009

39. Ametov AS, Tsygankova OV. Complex metabolic protection as a modern strategy for the management of type 2 diabetes mellitus. Endokrinologiya: novosti, mneniya, obuchenie. 2021;10(2):93-104. (In Russ.). doi: https://doi.org/10.33029/2304-9529-2021-10-2-93-104

40. Iacobellis G, Willens HJ. Echocardiographic epicardial fat: A review of research and clinical applications. J Am Soc Echocardiogr. 2009;22(12):1311-1319. doi: https://doi.org/10.1016/j.echo.2009.10.013

41. Nakazato R, Shmilovich H, Tamarappoo BK, et al. Interscan reproducibility of computer-aided epicardial and thoracic fat measurement from noncontrast cardiac CT. J Cardiovasc Comput Tomogr. 2011;5(3):172-179. doi: https://doi.org/10.1016/j.jcct.2011.03.009.

42. Doesch C, Streitner F, Bellm S, et al. Epicardial adipose tissue assessed by cardiac magnetic resonance imaging in patients with heart failure due to dilated cardiomyopathy. Obesity (Silver Spring). 2013;21:E253-E261. doi: https://doi.org/10.1002/oby.20149

43. Nagy E, Jermendy AL, Merkely B, et al. Clinical importance of epicardial adipose tissue. Arch Med Sci. 2017;13(4):864-874. doi: https://doi.org/10.5114/aoms.2016.63259

44. Packer M. Do most patients with obesity or type 2 diabetes, and atrial fibrillation, also have undiagnosed heart failure? A critical conceptual framework for understanding mechanisms and improving diagnosis and treatment. Eur J Heart Fail. 2020;22(2):214-227. doi: https://doi.org/10.1002/ejhf.1646

45. Hanna A, Frangogiannis NG. Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovasc Drugs Ther. 2020;34(6):849-863. doi: https://doi.org/10.1007/s10557-020-07071-0

46. Mitic VT, Stojanovic DR, Deljanin Ilic MZ, et al. Cardiac remodeling biomarkers as potential circulating markers of left ventricular hypertrophy in heart failure with preserved ejection fraction. Tohoku J Exp Med. 2020;250(4):233-242. doi: https://doi.org/10.1620/tjem.250.233

47. Kuster N, Huet F, Dupuy AM, et al. Multimarker approach including CRP, sST2 and GDF-15 for prognostic stratification in stable heart failure. ESC Heart Fail. 2020;7(5):2230-2239. doi: https://doi.org/10.1002/ehf2.12680

48. Sardu C, Pieretti G, D’Onofrio N, et al. Inflammatory cytokines and SIRT1 levels in subcutaneous abdominal fat: relationship with cardiac performance in overweight pre-diabetics patients. Front Physiol. 2018;9(12):1311-1319. doi: https://doi.org/10.3389/fphys.2018.01030

49. Schernthaner G, Brand K, Bailey CJ. Metformin and the heart: Update on mechanisms of cardiovascular protection with special reference to comorbid type 2 diabetes and heart failure. Metabolism. 2022;130(12):155160. doi: https://doi.org/10.1016/j.metabol.2022.155160

50. Shaenko ZA, Rasin MS. Effektivnost’ i bezopasnost’ metformina i pioglitazona u pacientov s ishemicheskoj bolezn’yu serdca i saharnym diabetom 2-go tipa. Mezhdunarodnyj endokrinologicheskij zhurnal. 2015;2:66-70. (In Russ.).

51. Sobel BE, Hardison RM, Genuth S, et al. BARI 2D Investigators. Profibrinolytic, antithrombotic, and antiinflammatory effects of an insulin-sensitizing strategy in patients in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial. Circulation. 2011;124(6):695-703. doi: https://doi.org/10.1161/CIRCULATIONAHA.110.014860

52. Sardu C, Pieretti G, D’Onofrio N, et al. Inflammatory cytokines and SIRT1 levels in subcutaneous abdominal fat: relationship with cardiac performance in overweight pre-diabetics patients. Front Physiol. 2018;9(4):3-17. doi: https://doi.org/10.3389/fphys.2018.01030

53. Dludla PV, Nkambule BB, Mazibuko-Mbeje SE, et al. Adipokines as a therapeutic target by metformin to improve metabolic function: A systematic review of randomized controlled trials. Pharmacol Res. 2021;163(4):105219. doi: https://doi.org/10.1016/j.phrs.2020.105219

54. Romantsova TR, Sych YuP. Immunometabolism and metainflammation in obesity. Obesity and metabolism. 2019;16(4):3-17. (In Russ.). doi: https://doi.org/10.14341/omet12218

55. Caslin HL, Bhanot M, Bolus WR, et al. Adipose tissue macrophages: Unique polarization and bioenergetics in obesity. Immunol Rev. 2020;295(1):101-113. doi: https://doi.org/10.1111/imr.12853

56. Cameron AR, Morrison VL, Levin D, et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ Res. 2016;119(5):652-665. doi: https://doi.org/10.1161/CIRCRESAHA.116.308445

57. Nesti L, Natali A. Metformin effects on the heart and the cardiovascular system: A review of experimental and clinical data. Nutr Metab Cardiovasc Dis. 2017;27(8):657-669. doi: https://doi.org/10.1016/j.numecd.2017.04.009

58. Elsanhoury A, Nelki V, Kelle S, et al. Epicardial fat expansion in diabetic and obese patients with heart failure and preserved ejection fraction—A specific HFpEF phenotype. Front Cardiovasc Med. 2021;8(4):105219. doi: https://doi.org/10.3389/fcvm.2021.720690

59. Ziyrek M, Kahraman S, Ozdemir E, et al. Metformin monotherapy significantly decreases epicardial adipose tissue thickness in newly diagnosed type 2 diabetes patients. Rev Port Cardiol (Engl Ed). 2019;38(6):419-423. doi: https://doi.org/10.1016/j.repc.2018.08.010

60. Kristófi R, Eriksson JW. Metformin as an anti-inflammatory agent: a short review. J Endocrinol. 2021;251(2):R11-R22. doi: https://doi.org/10.1530/JOE-21-0194

61. Sardu C, D’Onofrio N, Torella M, et al. Metformin therapy effects on the expression of sodium-glucose cotransporter 2, leptin, and SIRT6 levels in pericoronary fat excised from pre-diabetic patients with acute myocardial infarction. Biomedicines. 2021;9(8):904. doi: https://doi.org/10.3390/biomedicines9080904

62. Mohan M, Al-Talabany S, McKinnie A, et al. Metformin regresses left ventricular hypertrophy in normotensive patients with coronary artery disease without type 2 diabetes mellitus — the met-remodel trial. Heart. 2018;104:A6. doi: https://doi.org/10.1136/heartjnl-2018-BCS.6

63. Investigation of metformin in pre-diabetes on atherosclerotic cardiovascular outcomes (VA-IMPACT). Available from: https://clinicaltrials.gov/ct2/show/NCT02915198 [cited February 2022].

64. Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Russian Journal of Cardiology. 2021;26(9):4701. (In Russ.). doi: https://doi.org/10.15829/1560-4071-2021-4701

65. Chang S-H, Wu L-S, Chiou M-J, et al. Association of metformin with lower atrial fibrillation risk among patients with type 2 diabetes mellitus: a population-based dynamic cohort and in vitro studies. Cardiovasc Diabetol. 2014;13(1):123. doi: https://doi.org/10.1186/s12933-014-0123-x

66. Yeh Y-H, Kuo C-T, Lee Y-S, et al. Region-specific gene expression profiles in the left atria of patients with valvular atrial fibrillation. Hear Rhythm. 2013;10(3):383-391. doi: https://doi.org/10.1016/j.hrthm.2012.11.013

67. Ivanov KP, Mychka VB, Masenko VP. Vliyanie metformina na mnozhestvennye faktory serdechno-sosudistogo riska. Effektivnaya farmakoterapiya. 2012;33:4-8. (In Russ.).

68. Ladeiras-Lopes R, Sampaio F, Leite S, et al. Metformin in non-diabetic patients with metabolic syndrome and diastolic dysfunction: the MET-DIME randomized trial. Endocrine. 2021;72(3):699-710. doi: https://doi.org/10.1007/s12020-021-02687-0

69. Dedov II, Romantsova TI, Shestakova MV. Rational approach to patients treatment with type 2 diabetes and obesity: results of the All-Russian observational program «AURORA». Obesity and metabolism. 2018;15(4):48-58. (In Russ.). doi: https://doi.org/10.14341/omet10076

70. Zhang Q, Hu N. Effects of Metformin on the Gut Microbiota in Obesity and Type 2 Diabetes Mellitus. Diabetes, Metab Syndr Obes Targets Ther. 2020;13(3):5003-5014. doi: https://doi.org/10.2147/DMSO.S286430

71. Diabetes Prevention Program Outcomes Study (DPPOS). Available from: http://www.clinicaltrials.gov/show/NCT00038727 [cited February 2022].

72. Apolzan JW, Venditti EM, Edelstein SL, et al; Diabetes Prevention Program Research Group. Long-Term Weight Loss With Metformin or Lifestyle Intervention in the Diabetes Prevention Program Outcomes Study. Ann Intern Med. 2019;170(10):682-690. doi: https://doi.org/10.7326/M18-1605. Erratum in: Ann Intern Med. 2020;173(6):508.

73. Zhang Q, Hu N. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2015;3(11):866-875. doi: https://doi.org/10.1016/S2213-8587(15)00291-0

74. American Diabetes Association. New data from Diabetes Prevention Program Outcomes Study shows persistent reduction of type 2 diabetes development over 22-year average follow-up. 2020. Available from: https://www.diabetes.org/newsroom/press-releases/2020/new-data-from-diabetes-prevention-program-outcomes-study-shows-persistent-reduction-of-t2d-development-over-22-year-average-follow-up [cited February 2022].

75. Hostalek U, Campbell I. Metformin for diabetes prevention: update of the evidence base. Curr Med Res Opin. 2021;37(10):1705-1717. doi: https://doi.org/10.1080/03007995.2021.1955667

76. Busko M. DPPOS at 22 years: ‘diabetes prevention is possible’ long term. Medscape Diabetes & Endocrinology. Available from: https://www.medscape.com/viewarticle/932876 [cited February 2022].

77. Goldberg RB, Aroda VR, Bluemke DA, et al. Diabetes Prevention Program Research Group. Effect of Long-Term Metformin and Lifestyle in the Diabetes Prevention Program and Its Outcome Study on Coronary Artery Calcium. Circulation. 2017;136(1):52-64. doi: https://doi.org/10.1161/CIRCULATIONAHA.116.025483

78. Nathan DM, Knowler WC, Edelstein S, et al. Long-term Effects of Metformin on Diabetes Prevention: Identification of Subgroups That Benefited Most in the Diabetes Prevention Program and Diabetes Prevention Program Outcomes Study. Diabetes Care. 2019;42(4):601-608. doi: https://doi.org/10.2337/dc18-1970


Supplementary files

1. Figure 1. Vicious circle between carbohydrate metabolism disorders and chronic heart failure (adapted from E. Braunwald [12]).
Subject
Type Исследовательские инструменты
View (388KB)    
Indexing metadata ▾
2. Figure 2. Mechanisms of development of pulmonary hypertension and chronic heart failure in obese patients (adapted from W. Paulus et al. [2]).
Subject
Type Исследовательские инструменты
View (297KB)    
Indexing metadata ▾
3. Figure 3. Obesity and the role of the leptin-aldosterone-neprilysin axis in the pathogenesis of chronic heart failure (adapted from M. Packer [33]).
Subject
Type Исследовательские инструменты
View (152KB)    
Indexing metadata ▾
4. Figure 4. Mechanisms of development and clinical effects of atrial and ventricular myopathy in obesity (adapted from M. Packer [44]).
Subject
Type Исследовательские инструменты
View (254KB)    
Indexing metadata ▾
5. Figure 5. Mechanisms of the antihyperglycemic and cardioprotective effects of metformin (adapted from G. Schernthaner, et al. [49]).
Subject
Type Исследовательские инструменты
View (439KB)    
Indexing metadata ▾
6. Figure 6. Design of DPP and DPPOS studies (adapted from J.W. Apolzan, et al. [72]).
Subject
Type Исследовательские инструменты
View (176KB)    
Indexing metadata ▾
7. Figure 7. Type 2 diabetes risk reduction in the DPP study during a 22-year follow-up in DPPOS.
Subject
Type Исследовательские инструменты
View (198KB)    
Indexing metadata ▾

Review

For citations:


Tsygankova O.V., Evdokimova N.E., Veretyuk V.V., Latyntseva L.D., Ametov A.S. Insulin resistance and heart failure with preserved ejection fraction. Pathogenetic and therapeutic crossroads. Diabetes mellitus. 2022;25(6):535-547. (In Russ.) https://doi.org/10.14341/DM12916

Views: 3526


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)