Risk factors of adverse outcome of COVID-19 and experience of Tocilizumab administration in patients on maintenance hemodialysis due to diabetic kidney disease
https://doi.org/10.14341/DM12688
Abstract
BACKGROUND: Patients with Type 2 Diabetes (T2DM) and patients on maintenance hemodialysis (MHD) are at a high risk of adverse clinical course of COVID-19. To date, the causes of high mortality in these groups are not fully understood. Data about peculiarity of clinical course and Tocilizumab (TCZ) administration in patients with T2DM receiving MHD due to outcome of diabetic kidney disease (DKD) are not yet highlighted in current publications.
AIMS: Identification of risk factors (RF) of adverse COVID-19 outcome and evaluation of TCZ administration in patients with T2DM receiving MHD due to DKD.
MATERIALS AND METHODS: The patients treated in Moscow City Hospital No52 were included in retrospective observational study. The observation period was from 04.15 to 07.30 2020. The study endpoints were the outcomes of hospitalization — discharge or lethal outcome. Data were collected from electronic medical database. The following independent variables were analysed: gender, age, body mass index, time from the onset of symptoms to hospital admission, cardiovascular and general comorbidity (Charlson Index, CCI), cardiovascular event (CVE) during hospitalization, treatment in ICU, mechanical ventilation (MV), degree of lung damage according to CT data, level of prandial glycemia at admission, MHDassociated parameters (vintage, type of vascular access, frequency of complications). The autopsy reports were evaluated for the purpose of lethal structure investigation. In a subgroup treated TCZ the time from symptoms onset to TCZ administration and number of laboratory indicators were evaluated.
RESULTS: 53 patients were included, mean age 68 ±9 y, males — 49%. General mortality in observation cohort was 45%, mortality in ICU — 81%, mortality on MV — 95%. High cardiovascular and general comorbidity was revealed (mean CCI — 8,3 ±1,5 points). The causes of outcomes according to autopsy reports data: CVE 37,5% (among them — acute myocardial infarction during hospitalization), severe respiratory failure — 62,5%. The independent predictors of lethal outcome were: MV (OR 106; 95% CI 11,5–984; р <0,001), 3-4 degree of lung damage according to CT data (ОR 6,2; 95% CI 1,803–21,449; р = 0,005), CVE during hospitalization (ОR 18,9; 95% CI 3,631–98,383; р <0,001); CCI ≥10 points (ОR 4,33; 95% CI 1,001–18,767; р = 0,043), level of prandial glycemia at admission ≥10 mmol/l (ОR 10,4; 95% CI 2,726–39,802; р <0,001). For risk identification of upcoming lethal outcome a predictive model was created with the use of discovered RF as variables. The predictive value of this model is 92,45% (positive prognostic value — 96,5%, negative prognostic value — 87,5%).
In TCZ treated subgroup the laboratory markers of adverse outcome were detected with application of correlation analysis. Among them: increasing level of CPR 24-48 hours before lethal outcome (r = 0,82), the reduction of lymphocytes count after TCZ administration (r = -0,49), increasing of leukocytes and further reduction of lymphocytes count 24-48 hours before lethal outcome (r = 0,55 и r = -0,52, resp.)).
CONCLUSIONS: The number of RF of adverse COVID-19 outcome in patients with T2DM receiving MHD due to DKD are identified. CVE is one of the leading causes of mortality in study cohort. According to our experience the preventive (instead of rescue) strategy of TCZ administration should be used.
About the Authors
E. M. Zeltyn-AbramovRussian Federation
Eugene M. Zeltyn-Abramov, MD, PhD, Professor; eLibrary SPIN: 3127-5530
1, Ostrovitianov street, 117997 Moscow
M. A. Lysenko
Russian Federation
Mar’yana A. Lysenko, MD, PhD, Professor; eLibrary SPIN: 3887-6250
Moscow
N. F. Frolova
Russian Federation
Nadia F. Frolova, MD, PhD; eLibrary SPIN: 3866-5560
Moscow
T. N. Markova
Russian Federation
Tatyana N. Markova, MD, PhD, Professor; eLibrary SPIN: 5914-2890
Moscow
N. I. Belavina
Russian Federation
Natalya I. Belavina, MD, PhD; eLibrary SPIN: 1712-7956
Moscow
N. N. Klochkova
Russian Federation
Nataliya N. Klochkova, MD; eLibrary SPIN: 5754-9406
Moscow
S. V. Kondrashkina
Russian Federation
Svetlana V. Kondrashkina, MD; eLibrary SPIN: 8567-6118
Moscow
R. T. Iskhakov
Russian Federation
Rustam T. Iskhakov, MD; eLibrary SPIN: 8123-1939
Moscow
A. I. Ushakova
Russian Federation
Anzhela I. Ushakova, MD; eLibrary SPIN: 5471-7436
Moscow
References
1. John Hopkins University in medicine coronavirus resource Center. Available at: https://coronavirus.jhu.edu. Accessed on October 1, 2020.
2. Sohrabi C, Alsafi Z, O’Neill N, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg. 2020;76:71-76. https://doi.org/10.1016/j.ijsu.2020.02.034
3. Alberici F, Delbarba E, Manenti C, et al. A report from the Brescia Renal COVID Task Force on the clinical characteristics and short-term outcome of hemodialysis patients with SARS-CoV-2 infection. Kidney Int. 2020;98(1):20-26. https://doi.org/10.1016/j.kint.2020.04.030
4. Roncon L, Zuin M, Rigatelli G, Zuliani G. Diabetic patients with COVID-19 infection are at higher risk of ICU admission and poor short-term outcome. J Clin Virol. 2020;127:104354. https://doi.org/10.1016/j.jcv.2020.104354
5. Scarpioni R, Manini A, Valsania T, et al. Covid-19 and its impact on nephropathic patients: the experience at Ospedale «Guglielmo da Saliceto» in Piacenza. G Ital Nefrol. 2020;37(2):2020-2022. Published 2020 Apr 9.
6. Alfano G, Perrone R, Fontana F, et al. Long-term effects of COVID-19 in a patient on maintenance dialysis. Hemodial Int. 2020;24(4):Е50-Е54. https://doi.org/10.1111/hdi.12859
7. Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. https://doi.org/10.1016/j.diabres.2019.107843
8. Alicic RZ, Rooney MT, Tuttle KR. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin J Am Soc Nephrol. 2017;12(12):2032-2045. https://doi.org/10.2215/CJN.11491116
9. Apicella M, Campopiano MC, Mantuano M, et al. COVID-19 in people with diabetes: understanding the reasons for worse outcomes. Lancet Diabetes Endocrinol. 2020;8(9):782-792. https://doi.org/10.1016/S2213-8587(20)30238-2
10. Onder G, Rezza G, Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA. 2020;323(18):1775-1776. https://doi.org/10.1001/jama.2020.4683
11. Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574-1581. https://doi.org/10.1001/jama.2020.5394
12. Hemmelgarn BR, Manns BJ, Quan H, Ghali WA. Adapting the Charlson Comorbidity Index for use in patients with ESRD. Am J Kidney Dis. 2003;42(1):125-132. https://doi.org/10.1016/s0272-6386(03)00415-3
13. Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society [published correction appears in Circulation. 2014 Jun 24;129(25 Suppl 2):S139-40]. Circulation. 2014;129(25 Suppl 2):S102-S138. https://doi.org/10.1161/01.cir.0000437739.71477.ee
14. Wang F, Yang Y, Dong K, et al. Clinical characteristics of 28 patients with diabetes and covid-19 in Wuhan, China. Endocr Pract. 2020;26(6):668-674 https://doi.org/10.4158/EP-2020-0108
15. Ceriello A, Standl E, Catrinoiu D, et al. Issues of Cardiovascular Risk Management in People With Diabetes in the COVID-19 Era. Diabetes Care. 2020;43(7):1427-1432. https://doi.org/10.2337/dc20-0941
16. Shi Q, Zhang X, Jiang F, et al. Clinical Characteristics and Risk Factors for Mortality of COVID-19 Patients With Diabetes in Wuhan, China: A Two-Center, Retrospective Study. Diabetes Care. 2020;43(7):1382-1391. https://doi.org/10.2337/dc20-0598
17. Huang I, Lim MA, Pranata R. Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia — A systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr. 2020;14(4):395-403. https://doi.org/10.1016/j.dsx.2020.04.018
18. Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020;369:m1966. https://doi.org/10.1136/bmj.m1966
19. Rajpal A, Rahimi L, Ismail-Beigi F. Factors leading to high morbidity and mortality of COVID-19 in patients with type 2 diabetes [published online ahead of print, 2020 Jul 16]. J Diabetes. 2020;10.1111/1753-0407.13085. https://doi.org/10.1111/1753-0407.13085
20. Bansal R, Gubbi S, Muniyappa R. Metabolic Syndrome and COVID 19: Endocrine-Immune-Vascular Interactions Shapes Clinical Course. Endocrinology. 2020;161(10):bqaa112. https://doi.org/10.1210/endocr/bqaa112
21. de Lucena TMC, da Silva Santos AF, de Lima BR, et al. Mechanism of inflammatory response in associated comorbidities in COVID-19. Diabetes Metab Syndr. 2020;14(4):597-600. https://doi.org/10.1016/j.dsx.2020.05.025
22. Badawi A, Klip A, Haddad P, et al. Type 2 diabetes mellitus and inflammation: Prospects for biomarkers of risk and nutritional intervention. Diabetes Metab Syndr Obes. 2010;3:173-186. https://doi.org/10.2147/dmsott.s9089
23. Bertoni AG, Saydah S, Brancati FL. Diabetes and the risk of infectionrelated mortality in the U.S. Diabetes Care. 2001;24(6):1044-1049. https://doi.org/10.2337/diacare.24.6.1044
24. Carey IM, Critchley JA, DeWilde S, et al. Risk of Infection in Type 1 and Type 2 Diabetes Compared With the General Population: A Matched Cohort Study. Diabetes Care. 2018;41(3):513-521. https://doi.org/10.2337/dc17-2131
25. Kornum JB, Thomsen RW, Riis A, et al. Type 2 diabetes and pneumonia outcomes: a population-based cohort study. Diabetes Care. 2007;30(9):2251-2257. https://doi.org/10.2337/dc06-2417
26. Falguera M, Pifarre R, Martin A, et al. Etiology and outcome of community-acquired pneumonia in patients with diabetes mellitus. Chest. 2005;128(5):3233-3239. https://doi.org/10.1378/chest.128.5.3233.
27. Korakas E, Ikonomidis I, Kousathana F, et al. Obesity and COVID-19: immune and metabolic derangement as a possible link to adverse clinical outcomes. Am J Physiol Endocrinol Metab. 2020;319(1):E105-E109. https://doi.org/10.1152/ajpendo.00198.2020
28. Caci G, Albini A, Malerba M, et al. COVID-19 and Obesity: Dangerous Liaisons. J Clin Med. 2020;9(8):2511. https://doi.org/10.3390/jcm9082511
29. Goicoechea M, Sánchez Cámara LA, Macías N, et al. COVID-19: clinical course and outcomes of 36 hemodialysis patients in Spain. Kidney Int. 2020;98(1):27-34. https://doi.org/10.1016/j.kint.2020.04.031
30. Tortonese S, Scriabine I, Anjou L, et al. COVID-19 in Patients on Maintenance Dialysis in the Paris Region. Kidney Int Rep. 2020;5(9):1535-1544. https://doi.org/10.1016/j.ekir.2020.07.016
31. La Milia V, Bacchini G, Bigi MC, et al. COVID-19 Outbreak in a Large Hemodialysis Center in Lombardy, Italy. Kidney Int Rep. 2020;5(7):1095-1099. https://doi.org/10.1016/j.ekir.2020.05.019
32. Valeri AM, Robbins-Juarez SY, Stevens JS, et al. Presentation and Outcomes of Patients with ESKD and COVID-19. J Am Soc Nephrol. 2020;31(7):1409-1415. https://doi.org/10.1681/ASN.2020040470
33. Sullivan MK, Rankin AJ, Jani BD, et al. Associations between multimorbidity and adverse clinical outcomes in patients with chronic kidney disease: a systematic review and meta-analysis. BMJ Open. 2020;10(6):e038401. https://doi.org/10.1136/bmjopen-2020-038401
34. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020;323(20):2052-2059. https://doi.org/10.1001/jama.2020.6775
35. Sarnak MJ, Jaber BL. Pulmonary infectious mortality among patients with end-stage renal disease. Chest. 2001;120(6):1883-1887. https://doi.org/10.1378/chest.120.6.1883
36. Henry BM, Lippi G. Chronic kidney disease is associated with severe coronavirus disease 2019 (COVID-19) infection. Int Urol Nephrol. 2020;52(6):1193-1194. https://doi.org/10.1007/s11255-020-02451-9
37. Saran R, Robinson B, Abbott KC, et al. US Renal Data System 2018 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis. 2019;73(3 Suppl 1):A7-A8. https://doi.org/10.1053/j.ajkd.2019.01.001
38. Trujillo H, Caravaca-Fontán F, Sevillano Á, et al. SARS-CoV-2 Infection in Hospitalized Patients With Kidney Disease. Kidney Int Rep. 2020;5(6):905-909. https://doi.org/10.1016/j.ekir.2020.04.024
39. Sullivan MK, Rankin AJ, Jani BD, et al. Associations between multimorbidity and adverse clinical outcomes in patients with chronic kidney disease: a systematic review and meta-analysis. BMJ Open. 2020;10(6):e038401. https://doi.org/10.1136/bmjopen-2020-038401
40. Schulert GS. Can tocilizumab calm the cytokine storm of COVID-19? Lancet Rheumatol. 2020;2(8):e449-e451. https://doi.org/10.1016/S2665-9913(20)30210-1
41. Buckley LF, Wohlford GF, Ting C, et al. Role for Anti-Cytokine Therapies in Severe Coronavirus Disease 2019. Crit Care Explor. 2020;2(8):e0178. https://doi.org/10.1097/CCE.0000000000000178
42. Ingraham NE, Lotfi-Emran S, Thielen BK, et al. Immunomodulation in COVID-19. Lancet Respir Med. 2020;8(6):544-546. https://doi.org/10.1016/S2213-2600(20)30226-5
43. Rizk JG, Kalantar-Zadeh K, Mehra MR, et al. PharmacoImmunomodulatory Therapy in COVID-19. Drugs. 2020;80(13):1267-1292. https://doi.org/10.1007/s40265-020-01367-z
44. Jordan SC, Zakowski P, Tran HP, et al. Compassionate Use of Tocilizumab for Treatment of SARS-CoV-2 Pneumonia [published online ahead of print, 2020 Jun 23]. Clin Infect Dis. 2020;ciaa812. https://doi.org/10.1093/cid/ciaa812
45. Toniati P, Piva S, Cattalini M, et al. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun Rev. 2020;19(7):102568. https://doi.org/10.1016/j.autrev.2020.102568
46. Conrozier T, Lohse A, Balblanc JC, et al. Biomarker variation in patients successfully treated with tocilizumab for severe coronavirus disease 2019 (COVID-19): results of a multidisciplinary collaboration. Clin Exp Rheumatol. 2020;38(4):742-747.
47. Luo P, Liu Y, Qiu L, et al. Tocilizumab treatment in COVID-19: A single center experience. J Med Virol. 2020;92(7):814-818. https://doi.org/10.1002/jmv.25801
48. Guaraldi G, Meschiari M, Cozzi-Lepri A, et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study [published correction appears in Lancet Rheumatol. 2020 Oct;2(10):e591]. Lancet Rheumatol. 2020;2(8):e474-e484. https://doi.org/10.1016/S2665-9913(20)30173-9
49. CDC COVID-19 Response Team. Preliminary Estimates of the Prevalence of Selected Underlying Health Conditions Among Patients with Coronavirus Disease 2019 United StEates, February 12-March 28, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(13):382-386. https://doi.org/10.15585/mmwr.mm6913e2
50. Caballero AE, Ceriello A, Misra A, et al. COVID-19 in people living with diabetes: An international consensus. J Diabetes Complications. 2020;34(9):107671. https://doi.org/10.1016/j.jdiacomp.2020.107671
51. Vremennyye metodicheskiye rekomendatsii: profilaktika, diagnostika i lecheniye novoy koronavirusnoy infektsii (COVID-19), 8-ya versiya ot 03.09.20 (static-1.rosminzdrav.ru). Minzdrav Rossii; 2020. (In Russ.). http://static-0.minzdrav.gov.ru. 27.09.2020.
52. Shamkhalova MS, Mokrysheva NG, Shestakova MV. COVID-19 and kidneys. Diabetes Mellitus. 2020;23(3):235-241 (In Russ.). https://doi.org/10.14341/DM12506
53. Shestakova MV, Mokrysheva NG, Dedov II. Course and treatment of diabetes mellitus in the context of COVID-19. Diabetes Mellitus. 2020;23(2):132-139. (In Russ.). https://doi.org/10.14341/DM12418
54. Brufsky A. Hyperglycemia, hydroxychloroquine, and the COVID-19 pandemic. J Med Virol. 2020;92(7):770-775. https://doi.org/10.1002/jmv.25887
55. Price CC, Altice FL, Shyr Y, et al. Tocilizumab Treatment for Cytokine Release Syndrome in Hospitalized COVID-19 Patients: Survival and Clinical Outcomes. Chest. 2020;158(4):1397-1408. https://doi.org/10.1016/j.chest.2020.06.006
56. Jordan SC, Zakowski P, Tran HP, et al. Compassionate Use of Tocilizumab for Treatment of SARS-CoV-2 Pneumonia [published online ahead of print, 2020 Jun 23]. Clin Infect Dis. 2020;ciaa812. https://doi.org/10.1093/cid/ciaa812
57. Somers EC, Eschenauer GA, Troost JP, et al. Tocilizumab for treatment of mechanically ventilated patients with COVID-19 [published online ahead of print, 2020 Jul 11]. Clin Infect Dis. 2020;ciaa954. https://doi.org/10.1093/cid/ciaa954
58. Quartuccio L, Sonaglia A, McGonagle D, et al. Profiling COVID-19 pneumonia progressing into the cytokine storm syndrome: Results from a single Italian Centre study on tocilizumab versus standard of care. J Clin Virol. 2020;129:104444. https://doi.org/10.1016/j.jcv.2020.104444
59. Rossotti R, Travi G, Ughi N, et al. Safety and efficacy of anti-il6-receptor tocilizumab use in severe and critical patients affected by coronavirus disease 2019: A comparative analysis. J Infect. 2020;81(4):e11-e17. https://doi.org/10.1016/j.jinf.2020.07.008
60. Roche’s phase III EMPACTA study showed Actemra/RoActemra reduced the likelihood of needing mechanical ventilation in hospitalized patients with COVID-19 associated pneumonia. Roche. 2020. Sep 18. Available at https://www.roche.com/investors/updates/inv-update-2020-09-18.htm
61. Henry BM, de Oliveira MHS, Benoit S, et al. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020;58(7):1021-1028. https://doi.org/10.1515/cclm-2020-0369
62. Guaraldi G, Meschiari M, Cozzi-Lepri A, et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study [published correction appears in Lancet Rheumatol. 2020 Oct;2(10):e591]. Lancet Rheumatol. 2020;2(8):e474-e484. https://doi.org/10.1016/S2665-9913(20)30173-9
Supplementary files
Review
For citations:
Zeltyn-Abramov E.M., Lysenko M.A., Frolova N.F., Markova T.N., Belavina N.I., Klochkova N.N., Kondrashkina S.V., Iskhakov R.T., Ushakova A.I. Risk factors of adverse outcome of COVID-19 and experience of Tocilizumab administration in patients on maintenance hemodialysis due to diabetic kidney disease. Diabetes mellitus. 2021;24(1):17-31. (In Russ.) https://doi.org/10.14341/DM12688

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).