Diabetes mellitus and heart failure — a modern look at the mechanisms of development
https://doi.org/10.14341/DM12648
Abstract
Heart failure (HF) is a pressing public health problem. According to the literature, the presence of diabetes mellitus (DM) significantly increases the risk of repeated hospitalizations and the length of hospital stay in patients with heart failure. The proportion of HF remains high due to increased life expectancy, higher prevalence of risk factors and improved survival rates. Currently, advances in the treatment of coronary heart disease (CHD) and valvular disease have significantly improved survival rates, but the prognosis for heart failure remains extremely poor. Among the most important medical problems, heart failure occupies a special place in patients with type 2 diabetes. DM contributes to the onset of HF through a variety of mechanisms, including a complex of specific structural, functional, and metabolic changes in the myocardium called diabetic cardiomyopathy. Despite the active study of the causes of cardiomyopathy, the search and implementation of new approaches in assessing the risk of developing this pathological phenomenon in patients with heart failure remains relevant. This review examines current hypotheses for the development of diabetic cardiomyopathy, such as insulin resistance, endothelial dysfunction, fibrosis, lipotoxicity, and energy disorders.
About the Authors
A. V. SvarovskayaRussian Federation
Alla V. Svarovskaya, MD, PhD, senior research associate
111A, Kievskaya st., 634012 Tomsk
eLibrary SPIN: 2390-2877
Competing Interests:
no conflict of interest
A. A. Garganeeva
Russian Federation
Alla A. Garganeeva, MD, PhD, Professor
Tomsk
eLibrary SPIN: 6774-7931
Competing Interests:
no conflict of interest
References
1. Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/ American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of Amer. Circulation. 2017;136(6):86-92. doi: https://doi.org/10.1161/CIR.0000000000000509
2. Metra M, Teerlink JR. Heart failure. Lancet. 2017;390:1981-1995. doi: https://doi.org/10.1016/S0140-6736(17)31071-1.
3. Lara KM, Levitan EB, Gutierrez OM, et al. Dietary Patterns and Incident Heart Failure in U.S. Adults Without Known Coronary Disease. J Am Coll Cardiol. 2019;73:2036-2045. doi: https://doi.org/10.1016/j.jacc.2019.01.067
4. Brown DA, Perry JB, Allen ME, et al. Expert consensus document: mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol. 2017;14:238-250. doi: https://doi.org/10.1038/nrcardio.2016.203
5. Cavender MA, Steg PG, Smith SC Jr, et al. Impact of Diabetes Mellitus on Hospitalization for Heart Failure, Cardiovascular Events, and Death: Outcomes at 4 Years From the Reduction of Atherothrombosis for Continued Health (REACH) Registry. Circulation. 2015;132(10):923-931. doi: https://doi.org/10.1161/CIRCULATIONAHA.114.014796
6. Paneni F. Empaglifl ozin across the stages of diabetic heart disease. Eur Heart J. 2018;39(5):371-373. doi: https://doi.org/10.1093/eurheartj/ehx519
7. Lee WS, Kim J. Diabetic cardiomyopathy: where we are and where we are going. Korean J Intern Med. 2017;32:404-421. doi: https://doi.org/10.3904/kjim.2016.208
8. Reznik EV, Nikitin IG. Cardiorenal syndrome in patients with heart failure as a stage of the cardiorenal continuum (Part I): definition, classification, pathogenesis, diagnosis, epidemiology (literature review). Archive of Internal Medicine. 2019;9(1):5-22 (In Russ.). doi: https://doi.org/10.20514/2226-6704-2019-9-1-5-22
9. Kotov SV, Rudakova IG, Isakova EV, Volchenkova ТV. Diabetic neuropathy: a variety of clinical forms (lecture). RMJ. 2017;25(11):822-830. In Russ.).
10. Spallone V, Ziegler D, Freeman R, et al. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev. 2011;27(7):639-653. doi: https://doi.org/10.1002/dmrr.1239
11. Bagriy AE, Suprun YV, Mykhailichenko IS, Golodnikov IA. Chronic heart failure and type 2 diabetes: state of the problem. Russian Journal of Cardiology. 2020;25(4):3858. (In Russ.). doi: https://doi.org/10.15829/1560-4071-2020-3858
12. Lorenzo-Almorós A, Tuñón J, Orejas M, et al. Diagnostic approaches for diabetic cardiomyopathy. Cardiovascular diabetology. 2017;16(28):1-14. doi: https://doi.org/10.1186/s12933-017-506-x
13. Althunibat OY, Al Hroob AM, Abukhalil MH, et al. Fisetin ameliorates oxidative stress, inflammation and apoptosis in diabetic cardiomyopathy. Life Sci. 2019;221:83-92. doi: https://doi.org/10.1016/j.lfs.2019.02.017.
14. Di Pino A, DeFronzo RA. Insulin Resistance and Atherosclerosis: Implications for Insulin Sensitizing Agents. Endocr Rev. 2019;40(6):1447-1467. doi: https://doi.org/10.1210/er.2018-00141
15. Bertero E, Maack C. Metabolic remodelling in heart failure. Nat Rev Cardiol. 2018;15:457-470. doi: https://doi.org/10.1038/s41569-018-0044-6
16. Ceylan-Isik AF, Kandadi MR, Xu X, et al. Apelin administration ameliorates high fat diet-induced cardiac hypertrophy and contractile dysfunction. J Mol Cell Cardiol. 2013;63:4-13. doi: https://doi.org/10.1016/j.yjmcc.2013.07.002
17. Kadowaki T, Ueki K, Yamauchi T, Kubota N. SnapShot: Insulin Signaling Pathways. Cell. 2012;148(3):624-624.e1. doi: https://doi.org/10.1016/j.cell.2012.01.034
18. Demidova TYu, Zenina SG. Insulin resistance and its role in the development of diabetes and other conditions. Current modalities to improve insulin sensitivity. RMJ. Medical Review. 2019;10(II):116-122. (In Russ.).
19. Riehle C, Abel ED. Insulin Signaling and Heart Failure. Circ Res. 2016;118(7):1151-1169. doi: https://doi.org/10.1161/CIRCRESAHA.116.306206
20. Boucher J, Kleinridders A, Kahn CR. Insulin Receptor Signaling in Normal and Insulin-Resistant States. Cold Spring Harb Perspect Biol. 2014;6(1):a009191-a009191. doi: https://doi.org/10.1101/cshperspect.a009191
21. Symons JD, Abel ED. Lipotoxicity contributes to endothelial dysfunction: A focus on the contribution from ceramide. Rev Endocr Metab Disord. 2013;14(1):59-68. doi: https://doi.org/10.1007/s11154-012-9235-3
22. Bharath LP, Ruan T, Li Y, et al. Ceramide-Initiated Protein Phosphatase 2A Activation Contributes to Arterial Dysfunction In Vivo. Diabetes. 2015;64(11):3914-3926. doi: https://doi.org/10.2337/db15-0244
23. Zhang QJ, Holland WL, Wilson L, et al. Ceramide mediates vascular dysfunction in diet-induced obesity by pp2a-mediated dephosphorylation of the enos-akt complex. Diabetes. 2012;61:1848-1859. doi: https://doi.org/10.2337/db11-1399.
24. Li Q, Park K, Li C, et al. Induction of vascular insulin resistance and endothelin-1 expression and acceleration of atherosclerosis by the overexpression of protein kinase c-beta isoform in the endothelium. Circulation research. 2013;113(4):418-427. doi: https://doi.org/10.1161/CIRCRESAHA.113.301074
25. Park K, Li Q, Rask-Madsen C, et al. Serine phosphorylation sites on irs2 activated by angiotensin ii and protein kinase c to induce selective insulin resistance in endothelial cells. Molecular and cellular biology. 2013;33(16):3227-3241. doi: https://doi.org/10.1128/MCB.00506-13.
26. Isenovic E, Kedees M, Tepavcevic S, et al. Role of PI3K/AKT, cPLA2 and ERK1/2 Signaling Pathways in Insulin Regulation of Vascular Smooth Muscle Cells Proliferation. Cardiovasc Hematol Disord Targets. 2009;9(3):172-180. doi: https://doi.org/10.2174/187152909789007034
27. Statsenko ME, Derevyanchenko MV. The role of systemic inflammation in decrease of elasticity of magistral arteries and in progression of endothelial dysfunction in patients with systemic hypertension, obesity and type 2 diabetes. Russian Journal of Cardiology. 2018;23(4):32-36. (In Russ.). doi: https://doi.org/10.15829/1560-4071-2018-4-32-36.
28. Fishman SL, Sonmez H, Basman C, et al. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: A review. Mol. Med. 2018;24:59. doi: https://doi.org/10.1186/s10020-018-0060-3
29. Rajasekar P, O’Neill CL, Eeles L, et al. Epigenetic Changes in Endothelial Progenitors as a Possible Cellular Basis for Glycemic Memory in Diabetic Vascular Complications. J Diabetes Res. 2015;2015(3):1-17. doi: https://doi.org/10.1155/2015/436879
30. Berezin A. Metabolic memory phenomenon in diabetes mellitus: Achieving and perspectives. Diabetes Metab Syndr Clin Res Rev. 2016;10(2):S176-S183. doi: https://doi.org/10.1016/j.dsx.2016.03.016
31. Prattichizzo F, Giuliani A, Ceka A, et al. Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clin Epigenetics. 2015;7(1):56. doi: https://doi.org/10.1186/s13148-015-0090-4
32. Potenza MA, Nacci C, De Salvia MA, et al. Targeting endothelial metaflammation to counteract diabesity cardiovascular risk: Current and perspective therapeutic options. Pharmacol Res. 2017;120(1):226-241. doi: https://doi.org/10.1016/j.phrs.2017.04.009
33. Maurano MT, Humbert R, Rynes E, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190-1195. doi: https://doi.org/10.1126/science.1222794.
34. Reddy MA, Natarajan R. Role of Epigenetic Mechanisms in the Vascular Complications of Diabetes. Pharmacological Research. 2013;120:435-454. doi: https://doi.org/10.1007/978-94-007-4525-4_19
35. Tate M, Grieve DJ, Ritchie RH. Are targeted therapies for diabetic cardiomyopathy on the horizon? Clin Sci. 2017;131(10):897-915. doi: https://doi.org/10.1042/CS20160491
36. Velic A, Laturnus D, Chhoun J, et al. Diabetic Basement Membrane Thickening Does Not Occur in Myocardial Capillaries of Transgenic Mice When Metallothionein is Overexpressed in Cardiac Myocytes. Anat Rec. 2013;296(3):480-487. doi: https://doi.org/10.1002/ar.22646
37. Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther. 2014;142(3):375-415. doi: https://doi.org/10.1016/j.pharmthera.2014.01.003
38. Borghetti G, von Lewinski D, Eaton DM, et al. Diabetic Cardiomyopathy: Current and Future Therapies. Beyond Glycemic Control. Front Physiol. 2018;9(3):375-415. doi: https://doi.org/10.3389/fphys.2018.01514
39. Palomer X, Pizarro-Delgado J, Vázquez-Carrera M. Emerging Actors in Diabetic Cardiomyopathy: Heartbreaker Biomarkers or Therapeutic Targets? Trends Pharmacol Sci. 2018;39(5):452-467. doi: https://doi.org/10.1016/j.tips.2018.02.010
40. Russo I, Frangogiannis NG. Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. J. Mol. Cell. Cardiol. 2016;90:84-93. doi: https://doi.org/10.1016/j.yjmcc.2015.12.011
41. Burgos-Morón, Abad-Jiménez, Marañón AM, et al. Relationship Between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues. J Clin Med. 2019;8(9):1385. doi: https://doi.org/10.3390/jcm8091385
42. Tumova J, Andel M, Trnka J. Excess of free fatty acids as a cause of metabolic dysfunction in skeletal muscle. Physiol. Res. 2016;65(2):193-207. doi: https://doi.org/10.33549/physiolres.932993
43. Palomer X, Pizarro-Delgado J, Barroso E, Vázquez-Carrera M. Palmitic and Oleic Acid: The Yin and Yang of Fatty Acids in Type 2 Diabetes Mellitus. Trends Endocrinol Metab. 2018;29(3):178-190. doi: https://doi.org/10.1016/j.tem.2017.11.009
44. Oh YS, Bae GD, Baek DJ, et al. Fatty Acid-Induced Lipotoxicity in Pancreatic Beta-Cells During Development of Type 2 Diabetes. Front Endocrinol (Lausanne). 2018;9(3):178-190. doi: https://doi.org/10.3389/fendo.2018.00384
45. Taegtmeyer H, Young ME, Lopaschuk GD, et al. Assessing Cardiac Metabolism. Circ Res. 2016;118(10):1659-1701. doi: https://doi.org/10.1161/RES.0000000000000097
46. Peterzan MA, Lygate CA, Neubauer S, Rider OJ. Metabolic remodeling in hypertrophied and failing myocardium: a review. Am J Physiol Circ Physiol. 2017;313(3):H597-H616. doi: https://doi.org/10.1152/ajpheart.00731.2016
47. Brown DA, Perry JB, Allen ME, et al. Mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol. 2017;14(4):238-250. doi: https://doi.org/10.1038/nrcardio.2016.203
48. Smyrnias I, Gray SP, Okonko DO, et al. Cardioprotective Effect of the Mitochondrial Unfolded Protein Response During Chronic Pressure Overload. J Am Coll Cardiol. 2019;73(14):1795-1806. doi: https://doi.org/10.1016/j.jacc.2018.12.087
49. Münzel T, Camici GG, Maack C, et al. Impact of Oxidative Stress on the Heart and Vasculature. J Am Coll Cardiol. 2017;70(2):212-229. doi: https://doi.org/10.1016/j.jacc.2017.05.035
50. Bertero E, Maack C. Metabolic remodeling in heart failure. Nat Rev Cardiol. 2018;15:457-470. doi: https://doi.org/10.1038/s41569-018-0044-6
51. Sorrentino V, Menzies KJ, Auwerx J. Repairing Mitochondrial Dysfunction in Disease. Annu Rev Pharmacol Toxicol. 2018;58:353–89. doi: https://doi.org/10.1146/annurev-pharmtox-010716-104908
52. Kim KH, Jeong YT, Oh H, et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med. 2013;19:83-92. doi: https://doi.org/10.1038/nm.3014
53. Foote K, Bennett MR. Molecular insights into vascular aging. Aging (Albany NY). 2018;10:3647-3649. doi: https://doi.org/10.18632/aging.101697
54. Crupi AN, Nunnelee JS, Taylor DJ, et al. Oxidative muscles have better mitochondrial homeostasis than glycolytic muscles throughout life and maintain mitochondrial function during aging. Aging (Albany NY). 2018;10:3327-3352. doi: https://doi.org/10.18632/aging.101643
55. Fuku N, Pareja-Galeano H, Zempo H, et al. The mitochondrial-derived peptide MOTS-c: a player in exceptional longevity? Aging Cell. 2015;14:921-923. doi: https://doi.org/10.1111/acel.12389
56. Keane KN, Cruzat VF, Carlessi R, et al. Molecular Events Linking Oxidative Stress and Inflammation to Insulin Resistance and β -Cell Dysfunction. Oxid Med Cell Longev. 2015;2015(2):1-15. doi: https://doi.org/10.1155/2015/181643
57. Teplyakov AT, Kuznetsova AV, Protopopova NV, et al. Prognostic value of lipoprotein associated phospholipase A2 in stratification of cardiovascular risk after coronary stenting in patients with type 2 diabetes: what threshold of decision rule to choose? Bulletin of Siberian medicine. 2015;14(2):47-54. (In Russ.). doi: https://doi.org/10.20538/1682-0363-2015-2-47-54
58. Blüher M. Adipokines – removing road blocks to obesity and diabetes therapy. Mol Metab. 2014;3(3):230-240. doi: https://doi.org/10.1016/j.molmet.2014.01.005
59. Svarovskaya AV, Teplyakov AT. Insulin resistance in diabetes mellitus. Control of the risk of cardiovascular complications. Tomsk: Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia; 2018. 196 p. (In Russ.).
60. Teplyakov АТ, Bolotskaya LA, Diblrov MM, et al. Clinicoimmunological disorders in patients with postinfarction left ventricular remodeling and chronic cardiac failure. Therapeutic Archive. 2008;80(11):52-57. (In Russ.).
61. Fiordelisi A, Iaccarino G, Morisco C, et al. NFkappaB is a Key Player in the Crosstalk between Inflammation and Cardiovascular Diseases. Int J Mol Sci. 2019;20(7):1599. doi: https://doi.org/10.3390/ijms20071599
62. Tokmachev RE, Budnevsky AV, Kravchenko AY. The role of inflammation in the pathogenesis of chronic heart failure. Therapeutic Archive. 2016;88(9):106-110. (In Russ.)]. doi: https://doi.org/10.17116/terarkh2016889106-110
Supplementary files
|
1. Рисунок 1. Патофизиологические механизмы развития диабетической кардиомиопатии. Примечание. СЖК — свободные жирные кислоты, ЛЖ — левый желудочек | |
Subject | ||
Type | Исследовательские инструменты | |
View
(319KB)
|
Indexing metadata ▾ |
|
2. Рисунок 2. Процессы, приводящие к развитию диабетической кардиомиопатии. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(367KB)
|
Indexing metadata ▾ |
Review
For citations:
Svarovskaya A.V., Garganeeva A.A. Diabetes mellitus and heart failure — a modern look at the mechanisms of development. Diabetes mellitus. 2022;25(3):267-274. (In Russ.) https://doi.org/10.14341/DM12648

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).