Diabetes mellitus associated with the mutation of the ABCC8 gene (MODY 12): features of clinical course and therapy
https://doi.org/10.14341/DM9600
Abstract
Maturity-Onset Diabetes of the Young (MODY) is a heterogeneous group of diseases associated with genes mutations leading to dysfunction of pancreatic β-cells. Among the 14 identified MODY variants, MODY 1–5 are the most studied. The article reports a MODY 12 clinical case, with mutation in ABCC8, encoding the sulphonylurea receptor. Diabetes mellitus manifested in a 27-year-old man with hyperglycaemia up to 24 mmol/L, without ketosis. Non-proliferative diabetic retinopathy, microalbuminuria, dyslipidaemia and carotid atherosclerosis were revealed upon initial examination. The levels of pancreatic islet cell antibodies and glutamate decarboxylase antibodies were negative, while the level of C-peptide was within the normal range. Insulin therapy in the basal-bolus regimen was provided with a gradual dose reduction due to frequent hypoglycaemia. The preproliferative retinopathy with macular oedema was revealed after 4 months of therapy, and panretinal photocoagulation of both eyes was performed. A molecular genetics study revealed a mutation in the gene ABCC8, the same mutation was found in patient’s mother and uncle. Insulin therapy was cancelled, and the treatment of gliclazide MR 60 mg/day was initiated, which resulted in extreme glycaemic excursions. Thereby, sodium–glucose cotranporter-2 (SGLT2) inhibitor dapagliflozin 10 mg/day was added. A reduction in glucose variability parameters were observed on combination therapy. After 6 months till 1.5 years of treatment, glycaemic control was optimal, no hypoglycaemic episodes were observed. This case study demonstrates clinical features of MODY 12, and the potential of combination of sulfonylurea and SGLT2 inhibitor in the treatment of this disease.
Keywords
About the Authors
Alla K. OvsyannikovaResearch Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University
Russian Federation
MD, PhD
Oksana D. Rymar
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation
MD, PhD
Elena V. Shakhtshneider
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation
PhD
Vadim V. Klimontov
Novosibirsk State University; Research Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation
MD, PhD, Professor
Elena A. Koroleva
Novosibirsk State University; Research Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation
MD, PhD, senior research associate
Mikhail I. Voevoda
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University
Russian Federation
MD, PhD, Professor
References
1. Петеркова В.А., Кураева Т.Л., Зильберман Л.И., и др. Генетические дефекты функции бета-клетки. В кн.: Сахарный диабет: многообразие клинических форм. Под ред. И.И. Дедова, М.В. Шестаковой. — М.: Медицинское информационное агентство; 2016. — С. 89-113. [Peterkova VA, Kuraeva TL, Zilberman LI, et al. Genetic defects in beta cell function. In: Dedov II, Shestakova MV, editors. Diabetes mellitus: a variety of clinical forms. Moscow: Medtsinskoe informatsionnoe agentstvo; 2016. (In Russ.)]
2. Зубкова Н.А., Арбатская Н.Ю., Петряйкина Е.Е., и др. Сахарный диабет типа MODY3: клиническая и молекулярно- генетическая характеристика 9 случаев заболевания // Проблемы эндокринологии. — 2014. — Т. 60. — №1. — С. 51-56. [Zubkova NA, Arbatskaya NY, Petryaikina EE, et al. Type 3 form of MODY: the clinical and molecular-genetic characteristic. Nine cases of the disease. Problems of endocrinology. 2014;60(1):51-56. (In Russ.)] doi: 10.14341/probl201460151-56
3. Fajans SS, Bell GI. MODY: history, genetics, pathophysiology, and clinical decision making. Diabetes Care. 2011;34(8):1878-1884. doi: 10.2337/dc11-0035
4. Ovsyannikova AK, Rymar OD, Ivanoshchuk DE, et al. A Case of Maturity Onset Diabetes of the Young (MODY3) in a Family with a Novel HNF1A Gene Mutation in Five Generations. Diabetes Ther. 2018;9(1):413-420. doi: 10.1007/s13300-017-0350-8
5. Воевода М.И., Иванова А.А, Шахтшнейдер Е.В., и др. Молекулярно-генетические основы MODY-диабета // Терапевтический архив. — 2016. — Т. 88. — №4. — С. 117-124. [Voevoda MI, Ivanova AA, Shakhtshneider EV, et al. Molecular genetics of maturity-onset diabetes of the young. Ter Arkh. 2016;88(4):117-124. (In Russ.)] doi: 10.17116/terarkh2016884117-124
6. Кураева Т.Л., Сечко Е.А., Еремина И.А., и др. Особенности течения MODY3 у ребенка с фенотипом сахарного диабета 2 типа // Сахарный диабет. — 2013. — T. 16. — №2. — С. 88-93. [Kuraeva TL, Sechko EA, Eremina IA, et al. MODY3 in the child with type 2 diabetes mellitus phenotype: case report. Diabetes mellitus. 2013;16(2):88-93. (In Russ.)] doi: 10.14341/2072-0351-3762
7. McDonald TJ, Ellard S. Maturity onset diabetes of the young: identification and diagnosis. Ann Clin Biochem. 2013;50(Pt 5):403-415. doi: 10.1177/0004563213483458
8. Bonnefond A, Philippe J, Durand E, et al. Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene. PLoS One. 2012;7(6):e37423. doi: 10.1371/journal.pone.0037423
9. Delvecchio M, Ludovico O, Menzaghi C, et al. Low prevalence of HNF1A mutations after molecular screening of multiple MODY genes in 58 Italian families recruited in the pediatric or adult diabetes clinic from a single Italian hospital. Diabetes Care. 2014;37(12):e258-260. doi: 10.2337/dc14-1788
10. Thanabalasingham G, Owen KR. Diagnosis and management of maturity onset diabetes of the young (MODY). BMJ. 2011;343:d6044. doi: 10.1136/bmj.d6044
11. Chen YC, Tung YC, Liu SY, et al. Clinical characteristics of type 1 diabetes mellitus in Taiwanese children aged younger than 6 years: A single-center experience. J Formos Med Assoc. 2017;116(5):340-344. doi: 10.1016/j.jfma.2016.07.005
12. Vickers KC, Rodriguez A. Human scavenger receptor class B type I variants, lipid traits, and cardiovascular disease. Circ Cardiovasc Genet. 2014;7(6):735-737. doi: 10.1161/CIRCGENETICS.114.000929
13. Vergeer M, Korporaal SJ, Franssen R, et al. Genetic variant of the scavenger receptor BI in humans. N Engl J Med. 2011;364(2):136-145. doi: 10.1056/NEJMoa0907687
14. Caussy C, Charriere S, Meirhaeghe A, et al. Multiple microRNA regulation of lipoprotein lipase gene abolished by 3'UTR polymorphisms in a triglyceride-lowering haplotype harboring p.Ser474Ter. Atherosclerosis. 2016;246:280-286. doi: 10.1016/j.atherosclerosis.2016.01.010
15. Girard CA, Wunderlich FT, Shimomura K, et al. Expression of an activating mutation in the gene encoding the KATP channel subunit Kir6.2 in mouse pancreatic beta cells recapitulates neonatal diabetes. J Clin Invest. 2009;119(1):80-90. doi: https://doi.org/10.1172/JCI35772
16. Haghvirdizadeh P, Mohamed Z, Abdullah NA, et al. KCNJ11: Genetic Polymorphisms and Risk of Diabetes Mellitus. J Diabetes Res. 2015;2015:908152. doi: 10.1155/2015/908152
17. Yang Y, Chan L. Monogenic Diabetes: What It Teaches Us on the Common Forms of Type 1 and Type 2 Diabetes. Endocr Rev. 2016;37(3):190-222. doi: 10.1210/er.2015-1116
18. Haghverdizadeh P, Sadat Haerian M, Haghverdizadeh P, Sadat Haerian B. ABCC8 genetic variants and risk of diabetes mellitus. Gene. 2014;545(2):198-204. doi: 10.1016/j.gene.2014.04.040
19. Gonsorcikova L, Vaxillaire M, Pruhova S, et al. Familial mild hyperglycemia associated with a novel ABCC8-V84I mutation within three generations. Pediatr Diabetes. 2011;12(3 Pt 2):266-269. doi: 10.1111/j.1399-5448.2010.00719.x
20. Harel S, Cohen AS, Hussain K, et al. Alternating hypoglycemia and hyperglycemia in a toddler with a homozygous p.R1419H ABCC8 mutation: an unusual clinical picture. J Pediatr Endocrinol Metab. 2015;28(3-4):345-351. doi: 10.1515/jpem-2014-0265
21. Evliyaoglu O, Ercan O, Ataoglu E, et al. Neonatal Diabetes: Two Cases with Isolated Pancreas Agenesis due to Homozygous PTF1A Enhancer Mutations and One with Developmental Delay, Epilepsy, and Neonatal Diabetes Syndrome due to KCNJ11 Mutation. J Clin Res Pediatr Endocrinol. 2018;10(2):168-174. doi: 10.4274/jcrpe.5162
22. Bowman P, Flanagan SE, Edghill EL, et al. Heterozygous ABCC8 mutations are a cause of MODY. Diabetologia. 2012;55(1):123-127. doi: 10.1007/s00125-011-2319-x
23. Riveline JP, Rousseau E, Reznik Y, et al. Clinical and metabolic features of adult-onset diabetes caused by ABCC8 mutations. Diabetes Care. 2012;35(2):248-251. doi: 10.2337/dc11-1469
24. Климонтов В.В., Мякина Н.Е. Вариабельность гликемии при сахарном диабете: инструмент для оценки качества гликемического контроля и риска осложнений // Сахарный диабет. — 2014. — Т. 17. — №2. — С. 76-82. [Klimontov VV, Myakina NE. Glycaemic variability in diabetes: a tool for assessing the quality of glycaemic control and the risk of complications. Diabetes mellitus. 2014;17(2):76-82. (In Russ.)] doi: 10.14341/DM20142
25. Кононенко И.В., Смирнова О.М. SGLT2: Новые подходы к комбинированной терапии // Медицинский Совет. — 2016. — №3. — С. 10-16. [Kononenko IV., Smirnova OM. SGLT2: Novye podkhody k kombinirovannoj terapii. Meditsinskiy Sovet. 2016;(3):10-16. (In Russ.)] doi: 10.21518/2079-701X-2016-3-10-17
26. Nishimura R, Osonoi T, Kanada S, et al. Effects of luseogliflozin, a sodium-glucose co-transporter 2 inhibitor, on 24-h glucose variability assessed by continuous glucose monitoring in Japanese patients with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled, crossover study. Diabetes Obes Metab. 2015;17(8):800-804. doi: 10.1111/dom.12481
27. Henry RR, Rosenstock J, Edelman S, et al. Exploring the potential of the SGLT2 inhibitor dapagliflozin in type 1 diabetes: a randomized, double-blind, placebo-controlled pilot study. Diabetes Care. 2015;38(3):412-419. doi: 10.2337/dc13-2955
28. Stride A, Ellard S, Clark P, et al. Cell Dysfunction, Insulin Sensitivity, and Glycosuria Precede Diabetes in Hepatocyte Nuclear Factor-1 Mutation Carriers. Diabetes Care. 2005;28(7):1751-1756. doi: 10.2337/diacare.28.7.1751
Supplementary files
|
1. Fig. 1. Patient A. Family tree. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(71KB)
|
Indexing metadata ▾ |
|
2. Fig. 2. Mutation p.Ala1457Thr, identified in the proband. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(1MB)
|
Indexing metadata ▾ |
|
3. Fig. 3. The results of continuous monitoring of glycemia in patients receiving gliclazide MB 60 mg / day (first graph) and in combination therapy (second graph). | |
Subject | ||
Type | Other | |
View
(39KB)
|
Indexing metadata ▾ |
Review
For citations:
Ovsyannikova A.K., Rymar O.D., Shakhtshneider E.V., Klimontov V.V., Koroleva E.A., Voevoda M.I. Diabetes mellitus associated with the mutation of the ABCC8 gene (MODY 12): features of clinical course and therapy. Diabetes mellitus. 2019;22(1):88-94. https://doi.org/10.14341/DM9600

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).