Preview

Diabetes mellitus

Advanced search

Electrical activity in rat retina in a streptozotocin-induced diabetes model

https://doi.org/10.14341/DM9490

Abstract

Objectives: Diabetic retinopathy remains the major cause of blindness among the working-age population of developed countries. Considering this, experimental models of diabetes involving laboratory animals are important for assessing clinically significant methods to determine early pathologic alterations of the retina. The early detection of diabetic retinopathy in combination with a search for new pathogenetic targets will enable focusing on new strategies to limit the development of critical changes in the retina and to prolong retinal functioning during the development of diabetes mellitus.


Aim: This study aimed to define parameters of electroretinography test that identifies changes due to retinal impairment in diabetes.


Methods: Experimental diabetes was induced in Wistar rats by intraperitoneally injecting streptozocin (65 mg/kg; group ‘DM’). The control group (‘CB’) received intraperitoneal injections of the vehicle, i.e. citric buffer. On each consecutive day of the experiment, all rats received insulin detemir (2 u/kg). Ophthalmoscopy and electroretinography were conducted before initiating the experiment and after 50, 58 and 66 days of injectin sptreptozocin.


Results: Amid 2u\kg insulin injection the glucose level in venous blood in «DM» group amounted to 30-40 mM. The ophthalmoscopy showed that the optic nerve disk paled by the 50th day, with its line erasing. During electroretinography, wave amplitude in oscillatory potential test tended to decrease. β-wave latency of photopic system increased with α-wave latency of photopic system and α- and β-waves latency of scotopic system not altering. In addition, the amplitude of rhythmic stimulation of 8 and 12 Hz decreased.


Conclusion: The most apparent parameters of electroretinography for modelling streptozocin-induced diabetes are wave amplitude during the oscillatory potential test, photopic B-wave latency and the amplitude of rhythmic stimulation. These results suggest that in diabetes, ischaemic injury is an important cause of early dysfunction of inner retinal layers.

About the Authors

Ekaterina M. Klochihina

Lomonosov Moscow State University


Russian Federation

MD



Aleksey K. Erdyakov

Lomonosov Moscow State University


Russian Federation

PhD in Biology



Maria P. Morozova

Lomonosov Moscow State University


Russian Federation

PhD



Svetlana A. Gavrilova

Lomonosov Moscow State University


Russian Federation

PhD in Biology, associate professor



Elena S. Akhapkina

Lomonosov Moscow State University


Russian Federation

student



Evgeniy V. Ivanov

Lomonosov Moscow State University


Russian Federation

MD



Zera N. Dzhemilova

Endocrinology Research Centre


Russian Federation

MD, research associate



Ekaterina V. Artemova

Endocrinology Research Centre


Russian Federation

MD, research associate



Alla Y. Tokmakova

Endocrinology Research Centre


Russian Federation

MD, PhD



Vladimir B. Koshelev

Lomonosov Moscow State University


Russian Federation

PhD in Biology



Gagik R. Galstyan

Endocrinology Research Centre


Russian Federation

MD, PhD, Professor



References

1. Di Leo MA, Caputo S, Falsini B, et al. Nonselective Loss of Contrast Sensitivity in Visual System Testing in Early Type I Diabetes. Diabetes Care. 1992;15(5):620-625. doi: 10.2337/diacare.15.5.620

2. Ewing FME, Deary IJ, McCrimmon RJ, et al. Effect of acute hypoglycemia on visual information processing in adults with type 1 diabetes mellitus. Physiol Behav. 1998;64(5):653-660. doi: 10.1016/s0031-9384(98)00120-6

3. Zochodne DW. Microangiopathy, Diabetes, and the Peripheral Nervous System. In: Veves A, Malik RA, editors. Diabetic Neuropathy. Clinical Diabetes. New York: Humana Press; 2003. p. 207-229. doi: 10.1007/978-1-59745-311-0_12

4. Gillies MC, Su T, Stayt J, et al. Effect of high glucose on permeability of retinal capillary endothelium in vitro. Invest Ophthalmol Vis Sci. 1997;38(3):635-642.

5. Puro DG. Diabetes-induced dysfunction of retinal Muller cells. Trans Am Ophthalmol Soc. 2002;100:339-352.

6. Ciudin A, Hernandez C, Simo R. Molecular Implications of the PPARs in the Diabetic Eye. PPAR Res. 2013;2013:686525. doi: 10.1155/2013/686525

7. Simo R, Hernandez C, European Consortium for the Early Treatment of Diabetic R. Neurodegeneration is an early event in diabetic retinopathy: therapeutic implications. Br J Ophthalmol. 2012;96(10):1285-1290. doi: 10.1136/bjophthalmol-2012-302005

8. Barber AJ, Lieth E, Khin SA, et al. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest. 1998;102(4):783-791. doi: 10.1172/JCI2425

9. Pescosolido N, Barbato A, Stefanucci A, Buomprisco G. Role of Electrophysiology in the Early Diagnosis and Follow-Up of Diabetic Retinopathy. J Diabetes Res. 2015;2015:319692. doi: 10.1155/2015/319692

10. Shankar U, Gunasundari R. A Review on Electrophysiology Based Detection of Diabetic Retinopathy. Procedia Comput Sci. 2015;48:630-637. doi: 10.1016/j.procs.2015.04.145

11. Furman BL. Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr Protoc Pharmacol. 2015;70:5 47 41-20. doi: 10.1002/0471141755.ph0547s70

12. Davidson E, Coppey L, Lu B, et al. The roles of streptozotocin neurotoxicity and neutral endopeptidase in murine experimental diabetic neuropathy. Exp Diabetes Res. 2009;2009:431980. doi: 10.1155/2009/431980

13. Tzekov R, Arden GB. The Electroretinogram in Diabetic Retinopathy. Surv Ophthalmol. 1999;44(1):53-60. doi: 10.1016/s0039-6257(99)00063-6

14. Jansson RW, Raeder MB, Krohn J. Photopic full-field electroretinography and optical coherence tomography in type 1 diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2015;253(7):989-997. doi: 10.1007/s00417-015-3034-y

15. Pardue MT, Barnes CS, Kim MK, et al. Rodent Hyperglycemia-Induced Inner Retinal Deficits are Mirrored in Human Diabetes. Transl Vis Sci Technol. 2014;3(3):6. doi: 10.1167/tvst.3.3.6

16. Wachtmeister L. Oscillatory potentials in the retina: what do they reveal. Prog Retin Eye Res. 1998;17(4):485-521. doi: 10.1016/s1350-9462(98)00006-8

17. van Dijk HW, Kok PH, Garvin M, et al. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest Ophthalmol Vis Sci. 2009;50(7):3404-3409. doi: 10.1167/iovs.08-3143

18. Kohzaki K, Vingrys AJ, Bui BV. Early inner retinal dysfunction in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci. 2008;49(8):3595-3604. doi: 10.1167/iovs.08-1679

19. Zhang Y, Fortune B, Atchaneeyasakul LO, et al. Natural history and histology in a rat model of laser-induced photothrombotic retinal vein occlusion. Curr Eye Res. 2008;33(4):365-376. doi: 10.1080/02713680801939318

20. Terelak-Borys B, Skonieczna K, Grabska-Liberek I. Ocular ischemic syndrome – a systematic review. Med Sci Monit. 2012;18(8):RA138-RA144. doi: 10.12659/msm.883260


Supplementary files

1. Электрическая активность сетчатки у крыс со стрептозотоцин-индуцированным сахарным диабетом
Subject
Type Исследовательские инструменты
Download (145KB)    
Indexing metadata ▾
2. Fig. 1. A. Dynamics of animal mass after intraperitoneal injection of citrate buffer (CB group, gray graphs) or streptozotocin (SD group, black graphs). B. Dynamics of venous blood glucose from the tail vein after intraperitoneal injection of citrate buffer (CB group, gray graphs) or streptozotocin (SD group, black graphs).
Subject
Type Исследовательские инструменты
View (183KB)    
Indexing metadata ▾
3. Fig. 2. The fundus of the right eye of the rat before intraperitoneal injection of streptozotocin and after 66 days.
Subject
Type Исследовательские инструменты
View (1MB)    
Indexing metadata ▾
4. Fig. 3. A. Averaged graphs of oscillatory potentials with designated estimated parameters 66 days after intraperitoneal injection of citrate buffer (CB group, gray graphs) or streptozotocin (SD group, black graphs). B. Examples of graphs of the rod response to intraperitoneal injection of streptozotocin and after 66 days. B. Examples of graphs of the maximum response to intraperitoneal injection of streptozotocin and after 66 days. D. Results of the analysis of the β-wave cone response after intraperitoneal injection of citrate buffer (CB group, gray graphs) or streptozotocin (SD group, black graphs): * - p <0.05 compared with the CB group. D. Results of the analysis of rhythmic electroretinography after intraperitoneal injection of citrate buffer (CB group, gray graphs) or streptozotocin (SD group, black graphs): * - p <0.05 compared with the CB group.
Subject
Type Исследовательские инструменты
View (317KB)    
Indexing metadata ▾

Review

For citations:


Klochihina E.M., Erdyakov A.K., Morozova M.P., Gavrilova S.A., Akhapkina E.S., Ivanov E.V., Dzhemilova Z.N., Artemova E.V., Tokmakova A.Y., Koshelev V.B., Galstyan G.R. Electrical activity in rat retina in a streptozotocin-induced diabetes model. Diabetes mellitus. 2018;21(5):356-363. (In Russ.) https://doi.org/10.14341/DM9490

Views: 1186


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)