Preview

Diabetes mellitus

Advanced search

Pathogenetic aspects of hepcidin metabolism and ferrocinetics dysregulation in carbohydrate metabolism disorders

https://doi.org/10.14341/DM9378

Abstract

Hepcidin, a hormone regulating iron metabolism, has received attention for its role in the pathogenesis of dysregulations in carbohydrate metabolism. Hepcidin disorders in patients with diabetes mellitus are bi-directional: manifesting as iron overload syndrome in cases of decreased hepcidin production and as anaemia of chronic disease in cases of hepcidin hypersecretion. However, till date, detailed analyses of mechanisms underlying hepcidin dysregulation have not been conducted nor have the interactions of ferrocinetic and carbohydrate-metabolic disorders been examined. An association between diabetes mellitus and neurodegenerative diseases as well as the role of iron metabolism in Alzheimer or Parkinson diseases is a subject of ongoing research. This review provides a summary of the current understanding of hepcidin regulation and its disorders in various diseases, including diabetes mellitus and neurodegenerative diseases. In addition, we provide an overview of the available therapies that address ferrocinetic disorders resulting from the dysregulation of hepcidin.

About the Authors

Tatiana V. Saprina

Siberian State Medical University


Russian Federation

MD, PhD, Professor



Anastasia P. Zima

Siberian State Medical University


Russian Federation

MD, PhD, Professor



Nadezhda N. Musina

Siberian State Medical University


Russian Federation

MD, PhD student



Tatiana S. Prokhorenko

Siberian State Medical University


Russian Federation

MD, PhD, research associate



Alina V. Latypova

Siberian State Medical University


Russian Federation

MD, PhD student



Natalia S. Shakhmanova

Siberian State Medical University


Russian Federation

MD, PhD student



Svetlana V. Budeeva

Siberian State Medical University


Russian Federation

MD, postgraduate student



References

1. Krause A, Neitz S, Mägert H-J, et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 2000;480(2-3):147-150. doi: 10.1016/s0014-5793(00)01920-7

2. Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a Urinary Antimicrobial Peptide Synthesized in the Liver. J Biol Chem. 2001;276(11):7806-7810. doi: 10.1074/jbc.M008922200

3. Sow FB, Florence WC, Satoskar AR, et al. Expression and localization of hepcidin in macrophages: a role in host defense against tuberculosis. J Leukoc Biol. 2007;82(4):934-945. doi: 10.1189/jlb.0407216

4. Kulaksiz H, Fein E, Redecker P, et al. Pancreatic beta-cells express hepcidin, an iron-uptake regulatory peptide. J Endocrinol. 2008;197(2):241-249. doi: 10.1677/JOE-07-0528

5. Addo L, Ikuta K, Tanaka H, et al. The three isoforms of hepcidin in human serum and their processing determined by liquid chromatography-tandem mass spectrometry (LC-tandem MS). Int J Hematol. 2016;103(1):34-43. doi: 10.1007/s12185-015-1885-y

6. De Domenico I, Zhang TY, Koening CL, et al. Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice. J Clin Invest. 2010;120(7):2395-2405. doi: 10.1172/JCI42011

7. Haase VH. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 2013;27(1):41-53. doi: 10.1016/j.blre.2012.12.003

8. Nicolas G, Bennoun M, Porteu A, et al. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc Natl Acad Sci U S A. 2002;99(7):4596-4601. doi: 10.1073/pnas.072632499

9. Kautz L, Meynard D, Monnier A, et al. Iron regulates phosphorylation of Smad1/5/8 and gene expression of Bmp6, Smad7, Id1, and Atoh8 in the mouse liver. Blood. 2008;112(4):1503-1509. doi: 10.1182/blood-2008-03-143354

10. D'Alessio F, Hentze MW, Muckenthaler MU. The hemochromatosis proteins HFE, TfR2, and HJV form a membrane-associated protein complex for hepcidin regulation. J Hepatol. 2012;57(5):1052-1060. doi: 10.1016/j.jhep.2012.06.015

11. Silvestri L, Pagani A, Nai A, et al. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab. 2008;8(6):502-511. doi: 10.1016/j.cmet.2008.09.012

12. Du X, She E, Gelbart T, et al. The serine protease TMPRSS6 is required to sense iron deficiency. Science. 2008;320(5879):1088-1092. doi: 10.1126/science.1157121

13. Lee DH, Zhou LJ, Zhou Z, et al. Neogenin inhibits HJV secretion and regulates BMP-induced hepcidin expression and iron homeostasis. Blood. 2010;115(15):3136-3145. doi: 10.1182/blood-2009-11-251199

14. Enns CA, Ahmed R, Zhang AS. Neogenin interacts with matriptase-2 to facilitate hemojuvelin cleavage. J Biol Chem. 2012;287(42):35104-35117. doi: 10.1074/jbc.M112.363937

15. Armitage AE, Eddowes LA, Gileadi U, et al. Hepcidin regulation by innate immune and infectious stimuli. Blood. 2011;118(15):4129-4139. doi: 10.1182/blood-2011-04-351957

16. Ganz T. Hepcidin and iron regulation, 10 years later. Blood. 2011;117(17):4425-4433. doi: 10.1182/blood-2011-01-258467

17. Nemeth E, Rivera S, Gabayan V, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004;113(9):1271-1276. doi: 10.1172/JCI20945

18. Kautz L, Jung G, Valore EV, et al. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46(7):678-684. doi: 10.1038/ng.2996

19. Perlstein TS, Pande R, Berliner N, Vanasse GJ. Prevalence of 25-hydroxyvitamin D deficiency in subgroups of elderly persons with anemia: association with anemia of inflammation. Blood. 2011;117(10):2800-2806. doi: 10.1182/blood-2010-09-309708

20. Kumar VA, Kujubu DA, Sim JJ, et al. Vitamin D supplementation and recombinant human erythropoietin utilization in vitamin D-deficient hemodialysis patients. J Nephrol. 2011;24(1):98-105. doi: 10.5301/jn.2010.1830

21. Bacchetta J, Zaritsky JJ, Sea JL, et al. Suppression of iron-regulatory hepcidin by vitamin D. J Am Soc Nephrol. 2014;25(3):564-572. doi: 10.1681/ASN.2013040355

22. Zughaier SM, Alvarez JA, Sloan JH, et al. The role of vitamin D in regulating the iron-hepcidin-ferroportin axis in monocytes. J Clin Transl Endocrinol. 2014;1(1):19-25. doi: 10.1016/j.jcte.2014.01.003

23. Pantopoulos K. Function of the hemochromatosis protein HFE: lessons from animal models. World J Gastroenterol. 2008;14(45):6893-6901. doi: 10.3748/wjg.14.6893

24. Pietrangelo A, Caleffi A, Henrion J, et al. Juvenile hemochromatosis associated with pathogenic mutations of adult hemochromatosis genes. Gastroenterology. 2005;128(2):470-479. doi: 10.1053/j.gastro.2004.11.057

25. Speletas M, Kioumi A, Loules G, et al. Analysis of SLC40A1 gene at the mRNA level reveals rapidly the causative mutations in patients with hereditary hemochromatosis type IV. Blood Cells Mol Dis. 2008;40(3):353-359. doi: 10.1016/j.bcmd.2007.09.011

26. Altes A, Bach V, Ruiz A, et al. Mutations in HAMP and HJV genes and their impact on expression of clinical hemochromatosis in a cohort of 100 Spanish patients homozygous for the C282Y mutation of HFE gene. Ann Hematol. 2009;88(10):951-955. doi: 10.1007/s00277-009-0705-y

27. European Association for the Study of the Liver. EASL clinical practice guidelines for HFE hemochromatosis. J Hepatol. 2010;53(1):3-22. doi: 10.1016/j.jhep.2010.03.001

28. Finberg KE, Heeney MM, Campagna DR, et al. Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat Genet. 2008;40(5):569-571. doi: 10.1038/ng.130

29. Fargion S, Valenti L, Fracanzani AL. Beyond hereditary hemochromatosis: new insights into the relationship between iron overload and chronic liver diseases. Dig Liver Dis. 2011;43:89–95. doi: 10.1016/j.dld.2010.07.006

30. Milic S, Mikolasevic I, Orlic Let al. The role of iron and iron overload in chronic liver disease. Med Sci Monit. 2016;22:2144-2151. doi: 10.12659/MSM.896494

31. Taes YE, Wuyts B, Boelaert JR, et al. Prohepcidin accumulates in renal insufficiency. Clin Chem Lab Med. 2004;42(4):387-389. doi: 10.1515/CCLM.2004.069

32. Tsuchiya K, Nitta K. Hepcidin is a potential regulator of iron status in chronic kidney disease. Ther Apher Dial. 2013;17(1):1-8. doi: 10.1111/1744-9987.12001

33. Macdougall IC, Malyszko J, Hider RC, Bansal SS. Current status of the measurement of blood hepcidin levels in chronic kidney disease. Clin J Am Soc Nephrol. 2010;5(9):1681-1689. doi: 10.2215/CJN.05990809

34. Uehata T, Tomosugi N, Shoji T, et al. Serum hepcidin-25 levels and anemia in non-dialysis chronic kidney disease patients: a cross-sectional study. Nephrol Dial Transplant. 2012;27(3):1076-1083. doi: 10.1093/ndt/gfr431

35. Barsan L, Stanciu A, Stancu S, et al. Bone marrow iron distribution, hepcidin, and ferroportin expression in renal anemia. Hematology. 2015;20(9):543-552. doi: 10.1179/1607845415Y.0000000004

36. Aregbesola A, Voutilainen S, Virtanen JK, et al. Serum hepcidin concentrations and type 2 diabetes. World J Diabetes. 2015;6(7):978-982. doi: 10.4239/wjd.v6.i7.978

37. Sam AH, Busbridge M, Amin A, et al. Hepcidin levels in diabetes mellitus and polycystic ovary syndrome. Diabet Med. 2013;30(12):1495-1499. doi: 10.1111/dme.12262

38. Jiang F, Sun ZZ, Tang YT, et al. Hepcidin expression and iron parameters change in Type 2 diabetic patients. Diabetes Res Clin Pract. 2011;93(1):43-48. doi: 10.1016/j.diabres.2011.03.028

39. Simcox JA, McClain DA. Iron and diabetes risk. Cell Metab. 2013;17(3):329-341. doi: 10.1016/j.cmet.2013.02.007

40. Rajpathak SN, Crandall JP, Wylie-Rosett J, et al. The role of iron in type 2 diabetes in humans. Biochim Biophys Acta. 2009;1790(7):671-681. doi: 10.1016/j.bbagen.2008.04.005

41. Equitani F, Fernandez-Real JM, Menichella G, et al. Bloodletting ameliorates insulin sensitivity and secretion in parallel to reducing liver iron in carriers of HFE gene mutations. Diabetes Care. 2008;31(1):3-8. doi: 10.2337/dc07-0939

42. Luque-Ramírez M, Alvarez-Blasco F, Botella-Carretero JI, et al. Increased body iron stores of obese women with polycystic ovary syndrome are a consequence of insulin resistance and hyperinsulinism and are not a result of reduced menstrual losses. Diabetes Care. 2007;30(9):2309-2313. doi: 10.2337/dc07-0642

43. Pechlaner R, Weiss G, Bansal S, et al. Inadequate hepcidin serum concentrations predict incident type 2 diabetes mellitus. Diabetes Metab Res Rev. 2016;32(2):187-192. doi: 10.1002/dmrr.2711

44. Dongiovanni P, Ruscica M, Rametta R, et al. Dietary iron overload induces visceral adipose tissue insulin resistance. Am J Pathol. 2013;182(6):2254-2263. doi: 10.1016/j.ajpath.2013.02.019

45. McCranor BJ, Langdon JM, Prince OD, et al. Investigation of the role of interleukin-6 and hepcidin antimicrobial peptide in the development of anemia with age. Haematologica. 2013;98(10):1633-1640. doi: 10.3324/haematol.2013.087114

46. Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta. 2012;1823(9):1434-1443. doi: 10.1016/j.bbamcr.2012.01.014

47. Rametta R, Dongiovanni P, Pelusi S, et al. Hepcidin resistance in dysmetabolic iron overload. Liver Int. 2016;36(10):1540-1548. doi: 10.1111/liv.13124

48. Christy AL, Manjrekar PA, Babu RP, et al. Influence of iron deficiency anemia on hemoglobin A1c levels in diabetic individuals with controlled plasma glucose levels. Iran Biomed J. 2014;18(2):88-93. doi: 10.6091/ibj.1257.2014

49. Sluiter WJ, Van Essen LH, Reitsma WD, Doorenbos H. Glycosylated HÆmoglobin and Iron Deficiency. Lancet. 1980;316(8193):531-532. doi: 10.1016/s0140-6736(80)91853-x

50. Hashimoto K, Noguchi S, Morimoto Y, et al. A1C but not serum glycated albumin is elevated in late pregnancy owing to iron deficiency. Diabetes Care. 2008;31(10):1945-1948. doi: 10.2337/dc08-0352

51. Crichton RR, Dexter DT, Ward RJ. Brain iron metabolism and its perturbation in neurological diseases. J Neural Transm (Vienna). 2011;118(3):301-314. doi: 10.1007/s00702-010-0470-z

52. Raha AA, Vaishnav RA, Friedland RP, et al. The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer's disease. Acta Neuropathol Commun. 2013;1:55. doi: 10.1186/2051-5960-1-55

53. Du F, Qian ZM, Luo Q, et al. Hepcidin Suppresses Brain Iron Accumulation by Downregulating Iron Transport Proteins in Iron-Overloaded Rats. Mol Neurobiol. 2015;52(1):101-114. doi: 10.1007/s12035-014-8847-x

54. Kurian MA, McNeill A, Lin JP, Maher ER. Childhood disorders of neurodegeneration with brain iron accumulation (NBIA). Dev Med Child Neurol. 2011;53(5):394-404. doi: 10.1111/j.1469-8749.2011.03955.x

55. Pyatigorskaya N, Sharman M, Corvol JC, et al. High nigral iron deposition in LRRK2 and Parkin mutation carriers using R2* relaxometry. Mov Disord. 2015;30(8):1077-1084. doi: 10.1002/mds.26218

56. Uversky VN, Li J, Fink AL. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson's disease and heavy metal exposure. J Biol Chem. 2001;276(47):44284-44296. doi: 10.1074/jbc.M105343200

57. Ramos E, Ruchala P, Goodnough JB, et al. Minihepcidins prevent iron overload in a hepcidin-deficient mouse model of severe hemochromatosis. Blood. 2012;120(18):3829-3836. doi: 10.1182/blood-2012-07-440743

58. Schmidt PJ, Racie T, Westerman M, et al. Combination therapy with a Tmprss6 RNAi-therapeutic and the oral iron chelator deferiprone additively diminishes secondary iron overload in a mouse model of beta-thalassemia intermedia. Am J Hematol. 2015;90(4):310-313. doi: 10.1002/ajh.23934

59. Hashizume M, Uchiyama Y, Horai N, et al. Tocilizumab, a humanized anti-interleukin-6 receptor antibody, improved anemia in monkey arthritis by suppressing IL-6-induced hepcidin production. Rheumatol Int. 2010;30(7):917-923. doi: 10.1007/s00296-009-1075-4

60. Schwoebel F, van Eijk LT, Zboralski D, et al. The effects of the anti-hepcidin Spiegelmer NOX-H94 on inflammation-induced anemia in cynomolgus monkeys. Blood. 2013;121(12):2311-2315. doi: 10.1182/blood-2012-09-456756


Supplementary files

1. Fig. 1. Diabetes mellitus and hepcidin synthesis deficiency.
Subject
Type Исследовательские инструменты
View (194KB)    
Indexing metadata ▾
2. Fig. 2. Diabetes and excess hepcidin production.
Subject
Type Исследовательские инструменты
View (263KB)    
Indexing metadata ▾

Review

For citations:


Saprina T.V., Zima A.P., Musina N.N., Prokhorenko T.S., Latypova A.V., Shakhmanova N.S., Budeeva S.V. Pathogenetic aspects of hepcidin metabolism and ferrocinetics dysregulation in carbohydrate metabolism disorders. Diabetes mellitus. 2018;21(6):506-512. (In Russ.) https://doi.org/10.14341/DM9378

Views: 4799


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)