Farnesoid X receptor (FXR) as a potential therapeutic target in nonalcoholic fatty liver disease and associated syndromes
https://doi.org/10.14341/DM9374
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a group of obesity-associated pathological changes characterized by abnormal accumulation of lipids in cells of the liver parenchyma. NAFLD and associated conditions, namely insulin resistance and type II diabetes mellitus (DM2), as well as the possible risks of developing fibrosis and cirrhosis with a potential outcome in hepatocellular carcinoma, represent the primary health problems in developed countries, gradually replacing the importance of similar pathologies caused by the regular use of hepatotoxic doses of alcoholic beverages. Recent fundamental and clinical studies demonstrated the important role of the farnesoid receptor (FXR, NR1H4) in the regulation of the metabolism of glucose, lipids and bile acids. This review focuses on the molecular aspects of the pathogenesis of NAFLD, the role of FXR (NR1H4) in the biology of this disease, and the prospects for using different FXR (NR1H4) modulators for therapy of NAFLD and associated conditions such as metabolic syndrome and DM2, as well as a number of other FXR (NR1H4) – mediated diseases.
About the Authors
Apollinariya V. BogolyubovaEngelhardt Institute of Molecular Biology
Russian Federation
junior research associate
Alexander Y. Mayorov
Endocrinology Research Centre
Russian Federation
MD, PhD
Ekaterina E. Mishina
Endocrinology Research Centre
Russian Federation
MD, PhD student, research associate
Anton M. Schwartz
Engelhardt Institute of Molecular Biology
Russian Federation
research associate
Pavel V. Belousov
Engelhardt Institute of Molecular Biology
Russian Federation
junior research associate
References
1. Benedict M, Zhang X. Non-alcoholic fatty liver disease: An expanded review. World J Hepatol. 2017;9(16):715–732. doi: 10.4254/wjh.v9.i16.715
2. Sayiner M, Koenig A, Henry L, Younossi ZM. Epidemiology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in the United States and the Rest of the World. Clin Liver Dis. 2016;20(2):205–214. doi: 10.1016/j.cld.2015.10.001
3. Kanwar P, Kowdley KV. The Metabolic Syndrome and Its Influence on Nonalcoholic Steatohepatitis. Clin Liver Dis. 2016;20(2):225–243. doi: 10.1016/j.cld.2015.10.002
4. Non-alcoholic Fatty Liver Disease Study Group; Lonardo A, Bellentani S, et al. Epidemiological modifiers of non-alcoholic fatty liver disease: Focus on high-risk groups. Dig Liver Dis. 2015;47(12):997–1006. doi: 10.1016/j.dld.2015.08.004
5. Godos J, Federico A, Dallio M, Scazzina F. Mediterranean diet and nonalcoholic fatty liver disease: molecular mechanisms of protection. International Int J Food Sci Nutr. 2017;68(1):18–27. doi: 10.1080/09637486.2016.1214239
6. Inagaki T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A. 2006;103(10):3920–3925. doi: 10.1073/pnas.0509592103
7. Parséus A, Sommer N, Sommer F, et al. Microbiota-induced obesity requires farnesoid X receptor. Gut. 2017;66(3):429–437. doi: 10.1136/gutjnl-2015-310283
8. Arab JP, Karpen SJ, Dawson PA, et al. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology. 2017;65(1):350–362. doi: 10.1002/hep.28709
9. Mazuy C, Helleboid A, Staels B, Lefebvre P. Nuclear bile acid signaling through the farnesoid X receptor. Cell Mol Life Sci. 2015;72(9):1631–1650. doi: 10.1007/s00018-014-1805-y
10. Sinal CJ, Tohkin M, Miyata M, et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000;102(6):731–744. doi: 10.1016/S0092-8674(00)00062-3
11. Cariou B, Chetiveaux M, Zaïr Y, et al. Fasting plasma chenodeoxycholic acid and cholic acid concentrations are inversely correlated with insulin sensitivity in adults. Nutr Metab (Lond). 2011;8(1):48. doi: 10.1186/1743-7075-8-48
12. Carr RM, Reid AE. FXR Agonists as Therapeutic Agents for Non-alcoholic Fatty Liver Disease. Curr Atheroscler Rep. 2015;17(4):16. doi: 10.1007/s11883-015-0500-2
13. Zhang Y, Lee FY, Barrera G, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A. 2006;103(4):1006–1011. doi: 10.1073/pnas.0506982103
14. Ferrebee CB, Dawson PA. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids. Acta Pharm Sin B. 2015;5(2):129–134. doi: 10.1016/j.apsb.2015.01.001
15. Jahn D, Rau M, Hermanns HM, Geier A. Mechanisms of enterohepatic fibroblast growth factor 15/19 signaling in health and disease. Cytokine Growth Factor Rev. 2015;26(6):625–635. doi: 10.1016/j.cytogfr.2015.07.016
16. Fuchs C, Traussnigg S, Trauner M. Nuclear Receptor Modulation for the Treatment of Nonalcoholic Fatty Liver Disease. Semin Liver Dis. 2016;36(1):69–86. doi: 10.1055/s-0036-1571296
17. Ali AH, Carey EJ, Lindor KD. Recent advances in the development of farnesoid X receptor agonists. Ann Transl Med. 2015;3(1):5. doi: 10.3978/j.issn.2305-5839.2014.12.06
18. Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113(10):1408–1418. doi: 10.1172/JCI21025
19. Liu X, Xue R, Ji L, et al. Activation of farnesoid X receptor (FXR) protects against fructose-induced liver steatosis via inflammatory inhibition and ADRP reduction. Biochem Biophys Res Commun. 2014;450(1):117–123. doi: 10.1016/j.bbrc.2014.05.072
20. Zhang S, Wang J, Liu Q, Harnish DC. Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis. J Hepatol. 2009;51(2):380–388. doi: 10.1016/j.jhep.2009.03.025
21. Watanabe M, Horai Y, Houten SM, et al. Lowering Bile Acid Pool Size with a Synthetic Farnesoid X Receptor (FXR) Agonist Induces Obesity and Diabetes through Reduced Energy Expenditure. J Biol Chem. 2011;286(30):26913–26920. doi: 10.1074/jbc.M111.248203
22. Mudaliar S, Henry RR, Sanyal AJ, et al. Efficacy and Safety of the Farnesoid X Receptor Agonist Obeticholic Acid in Patients With Type 2 Diabetes and Nonalcoholic Fatty Liver Disease. Gastroenterology. 2013;145(3):574–582.e1. doi: 10.1053/j.gastro.2013.05.042
23. Borai A, Livingstone C, Kaddam I, Ferns G. Selection of the appropriate method for the assessment of insulin resistance. BMC Med Res Methodol. 2011;11(1):158. doi: 10.1186/1471-2288-11-158
24. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385(9972):956–965. doi: 10.1016/S0140-6736(14)61933-4
25. Chiang JY. Bile Acid Metabolism and Signaling. Compr Physiol.2013;3(3):1191–1212. doi: 10.1002/cphy.c120023
26. Couzin-Frankel J. Lipid biology. Why high ‘good cholesterol’ can be bad news. Science 2016;351(6278):1126–1126. doi: 10.1126/science.351.6278.1126
27. Pencek R, Marmon T, Roth JD, et al. Effects of obeticholic acid on lipoprotein metabolism in healthy volunteers. Diabetes Obes Metab. 2016;18(9):936–940. doi: 10.1111/dom.12681
28. Jiang C, Xie C, Lv Y, et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat Commun. 2015;6:10166. doi: 10.1038/ncomms10166
29. Jiang C, Xie C, Li F, et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest. 2015;125(1):386–402. doi: 10.1172/JCI76738
30. Sayin SI, Wahlström A, Felin J, et al. Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-beta-muricholic Acid, a Naturally Occurring FXR Antagonist. Cell Metab. 2013;17(2):225–235. doi: 10.1016/j.cmet.2013.01.003
31. Nie H, Song C, Wang D, et al. MicroRNA-194 inhibition improves dietary-induced non-alcoholic fatty liver disease in mice through targeting on FXR. Biochim Biophys Acta. 2017;1863(12):3087-3094. doi: 10.1016/j.bbadis.2017.09.020
32. Nakaoka T, Saito Y, Shimamoto Y, et al. Cluster microRNAs miR-194 and miR-215 suppress the tumorigenicity of intestinal tumor organoids. Cancer Sci. 2017;108(4):678–684. doi: 10.1111/cas.13165
33. Sundaram P, Hultine S, Smith LM, et al. p53-Responsive miR-194 Inhibits Thrombospondin-1 and Promotes Angiogenesis in Colon Cancers. Cancer Res. 2011;71(24):7490–7501. doi: 10.1158/0008-5472.CAN-11-1124
34. Li P, Yang Y, Liu H, et al. MiR-194 functions as a tumor suppressor in laryngeal squamous cell carcinoma by targeting Wee1. J Hematol Oncol. 2017;10(1):32. doi: 10.1186/s13045-017-0402-6
35. Pichiorri F, Suh S-S, Rocci A, et al. Downregulation of p53-inducible microRNAs 192, 194, and 215 Impairs the p53/MDM2 Autoregulatory Loop in Multiple Myeloma Development. Cancer Cell. 2010;18(4):367–381. doi: 10.1016/j.ccr.2010.09.005
36. Wang B, Shen Z, Gao Z, et al. MiR-194, commonly repressed in colorectal cancer, suppresses tumor growth by regulating the MAP4K4/c-Jun/MDM2 signaling pathway. Cell Cycle. 2015;14(7):1046–1058. doi: 10.1080/15384101.2015.1007767
37. Caramuta S, Egyházi S, Rodolfo M, et al. MicroRNA Expression Profiles Associated with Mutational Status and Survival in Malignant Melanoma. J Invest Dermatol. 2010;130(8):2062–2070. doi: 10.1038/jid.2010.63
38. D’Angelo E, Zanon C, Sensi F, et al. miR-194 as predictive biomarker of responsiveness to neoadjuvant chemoradiotherapy in patients with locally advanced rectal adenocarcinoma. Journal of J Clin Pathol. 2017:jclinpath-2017-204690. doi: 10.1136/jclinpath-2017-204690
39. Zhai H, Karaayvaz M, Dong P, et al. Prognostic significance of miR-194 in endometrial cancer. Biomark Res. 2013;(1):12. doi: 10.1186/2050-7771-1-12
40. Basati G, Razavi AE, Pakzad I, Malayeri FA. Circulating levels of the miRNAs, miR-194, and miR-29b, as clinically useful biomarkers for colorectal cancer. Tumour Biol. 2016;37(2):1781–1788. doi: 10.1007/s13277-015-3967-0
41. Giaginis C, Tsoukalas N, Alexandrou P, et al. Clinical significance of farnesoid X receptor expression in thyroid neoplasia. Future Oncol. 2017;13(20):1785–1792. doi: 10.2217/fon-2017-0090
42. Giaginis C, Karandrea D, Alexandrou P, et al. High Farnesoid X Receptor (FXR) expression is a strong and independent prognosticator in invasive breast carcinoma. Neoplasma. 2017;64(4):633–639. doi: 10.4149/neo_2017_420
43. You W, Chen B, Liu X, et al. Farnesoid X receptor, a novel proto-oncogene in non-small cell lung cancer, promotes tumor growth via directly transactivating CCND1. Sci Rep. 2017;7(1):591. doi: 10.1038/s41598-017-00698-4
Supplementary files
|
1. Fig. 1. The role of FXR in metabolism. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(272KB)
|
Indexing metadata ▾ |
|
2. Fig. 2. Signal cascades, in which FXR is involved. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(516KB)
|
Indexing metadata ▾ |
Review
For citations:
Bogolyubova A.V., Mayorov A.Y., Mishina E.E., Schwartz A.M., Belousov P.V. Farnesoid X receptor (FXR) as a potential therapeutic target in nonalcoholic fatty liver disease and associated syndromes. Diabetes mellitus. 2017;20(6):449-453. (In Russ.) https://doi.org/10.14341/DM9374

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).