Preview

Diabetes mellitus

Advanced search

Farnesoid X receptor (FXR) as a potential therapeutic target in nonalcoholic fatty liver disease and associated syndromes

https://doi.org/10.14341/DM9374

Abstract

Nonalcoholic fatty liver disease (NAFLD) is a group of obesity-associated pathological changes characterized by abnormal accumulation of lipids in cells of the liver parenchyma. NAFLD and associated conditions, namely insulin resistance and type II diabetes mellitus (DM2), as well as the possible risks of developing fibrosis and cirrhosis with a potential outcome in hepatocellular carcinoma, represent the primary health problems in developed countries, gradually replacing the importance of similar pathologies caused by the regular use of hepatotoxic doses of alcoholic beverages. Recent fundamental and clinical studies demonstrated the important role of the farnesoid receptor (FXR, NR1H4) in the regulation of the metabolism of glucose, lipids and bile acids. This review focuses on the molecular aspects of the pathogenesis of NAFLD, the role of FXR (NR1H4) in the biology of this disease, and the prospects for using different FXR (NR1H4) modulators for therapy of NAFLD and associated conditions such as metabolic syndrome and DM2, as well as a number of other FXR (NR1H4) – mediated diseases.

About the Authors

Apollinariya V. Bogolyubova

Engelhardt Institute of Molecular Biology


Russian Federation

junior research associate



Alexander Y. Mayorov

Endocrinology Research Centre


Russian Federation

MD, PhD



Ekaterina E. Mishina

Endocrinology Research Centre


Russian Federation

MD, PhD student, research associate



Anton M. Schwartz

Engelhardt Institute of Molecular Biology


Russian Federation

research associate



Pavel V. Belousov

Engelhardt Institute of Molecular Biology


Russian Federation

junior research associate



References

1. Benedict M, Zhang X. Non-alcoholic fatty liver disease: An expanded review. World J Hepatol. 2017;9(16):715–732. doi: 10.4254/wjh.v9.i16.715

2. Sayiner M, Koenig A, Henry L, Younossi ZM. Epidemiology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in the United States and the Rest of the World. Clin Liver Dis. 2016;20(2):205–214. doi: 10.1016/j.cld.2015.10.001

3. Kanwar P, Kowdley KV. The Metabolic Syndrome and Its Influence on Nonalcoholic Steatohepatitis. Clin Liver Dis. 2016;20(2):225–243. doi: 10.1016/j.cld.2015.10.002

4. Non-alcoholic Fatty Liver Disease Study Group; Lonardo A, Bellentani S, et al. Epidemiological modifiers of non-alcoholic fatty liver disease: Focus on high-risk groups. Dig Liver Dis. 2015;47(12):997–1006. doi: 10.1016/j.dld.2015.08.004

5. Godos J, Federico A, Dallio M, Scazzina F. Mediterranean diet and nonalcoholic fatty liver disease: molecular mechanisms of protection. International Int J Food Sci Nutr. 2017;68(1):18–27. doi: 10.1080/09637486.2016.1214239

6. Inagaki T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A. 2006;103(10):3920–3925. doi: 10.1073/pnas.0509592103

7. Parséus A, Sommer N, Sommer F, et al. Microbiota-induced obesity requires farnesoid X receptor. Gut. 2017;66(3):429–437. doi: 10.1136/gutjnl-2015-310283

8. Arab JP, Karpen SJ, Dawson PA, et al. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology. 2017;65(1):350–362. doi: 10.1002/hep.28709

9. Mazuy C, Helleboid A, Staels B, Lefebvre P. Nuclear bile acid signaling through the farnesoid X receptor. Cell Mol Life Sci. 2015;72(9):1631–1650. doi: 10.1007/s00018-014-1805-y

10. Sinal CJ, Tohkin M, Miyata M, et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000;102(6):731–744. doi: 10.1016/S0092-8674(00)00062-3

11. Cariou B, Chetiveaux M, Zaïr Y, et al. Fasting plasma chenodeoxycholic acid and cholic acid concentrations are inversely correlated with insulin sensitivity in adults. Nutr Metab (Lond). 2011;8(1):48. doi: 10.1186/1743-7075-8-48

12. Carr RM, Reid AE. FXR Agonists as Therapeutic Agents for Non-alcoholic Fatty Liver Disease. Curr Atheroscler Rep. 2015;17(4):16. doi: 10.1007/s11883-015-0500-2

13. Zhang Y, Lee FY, Barrera G, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A. 2006;103(4):1006–1011. doi: 10.1073/pnas.0506982103

14. Ferrebee CB, Dawson PA. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids. Acta Pharm Sin B. 2015;5(2):129–134. doi: 10.1016/j.apsb.2015.01.001

15. Jahn D, Rau M, Hermanns HM, Geier A. Mechanisms of enterohepatic fibroblast growth factor 15/19 signaling in health and disease. Cytokine Growth Factor Rev. 2015;26(6):625–635. doi: 10.1016/j.cytogfr.2015.07.016

16. Fuchs C, Traussnigg S, Trauner M. Nuclear Receptor Modulation for the Treatment of Nonalcoholic Fatty Liver Disease. Semin Liver Dis. 2016;36(1):69–86. doi: 10.1055/s-0036-1571296

17. Ali AH, Carey EJ, Lindor KD. Recent advances in the development of farnesoid X receptor agonists. Ann Transl Med. 2015;3(1):5. doi: 10.3978/j.issn.2305-5839.2014.12.06

18. Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113(10):1408–1418. doi: 10.1172/JCI21025

19. Liu X, Xue R, Ji L, et al. Activation of farnesoid X receptor (FXR) protects against fructose-induced liver steatosis via inflammatory inhibition and ADRP reduction. Biochem Biophys Res Commun. 2014;450(1):117–123. doi: 10.1016/j.bbrc.2014.05.072

20. Zhang S, Wang J, Liu Q, Harnish DC. Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis. J Hepatol. 2009;51(2):380–388. doi: 10.1016/j.jhep.2009.03.025

21. Watanabe M, Horai Y, Houten SM, et al. Lowering Bile Acid Pool Size with a Synthetic Farnesoid X Receptor (FXR) Agonist Induces Obesity and Diabetes through Reduced Energy Expenditure. J Biol Chem. 2011;286(30):26913–26920. doi: 10.1074/jbc.M111.248203

22. Mudaliar S, Henry RR, Sanyal AJ, et al. Efficacy and Safety of the Farnesoid X Receptor Agonist Obeticholic Acid in Patients With Type 2 Diabetes and Nonalcoholic Fatty Liver Disease. Gastroenterology. 2013;145(3):574–582.e1. doi: 10.1053/j.gastro.2013.05.042

23. Borai A, Livingstone C, Kaddam I, Ferns G. Selection of the appropriate method for the assessment of insulin resistance. BMC Med Res Methodol. 2011;11(1):158. doi: 10.1186/1471-2288-11-158

24. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385(9972):956–965. doi: 10.1016/S0140-6736(14)61933-4

25. Chiang JY. Bile Acid Metabolism and Signaling. Compr Physiol.2013;3(3):1191–1212. doi: 10.1002/cphy.c120023

26. Couzin-Frankel J. Lipid biology. Why high ‘good cholesterol’ can be bad news. Science 2016;351(6278):1126–1126. doi: 10.1126/science.351.6278.1126

27. Pencek R, Marmon T, Roth JD, et al. Effects of obeticholic acid on lipoprotein metabolism in healthy volunteers. Diabetes Obes Metab. 2016;18(9):936–940. doi: 10.1111/dom.12681

28. Jiang C, Xie C, Lv Y, et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat Commun. 2015;6:10166. doi: 10.1038/ncomms10166

29. Jiang C, Xie C, Li F, et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest. 2015;125(1):386–402. doi: 10.1172/JCI76738

30. Sayin SI, Wahlström A, Felin J, et al. Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-beta-muricholic Acid, a Naturally Occurring FXR Antagonist. Cell Metab. 2013;17(2):225–235. doi: 10.1016/j.cmet.2013.01.003

31. Nie H, Song C, Wang D, et al. MicroRNA-194 inhibition improves dietary-induced non-alcoholic fatty liver disease in mice through targeting on FXR. Biochim Biophys Acta. 2017;1863(12):3087-3094. doi: 10.1016/j.bbadis.2017.09.020

32. Nakaoka T, Saito Y, Shimamoto Y, et al. Cluster microRNAs miR-194 and miR-215 suppress the tumorigenicity of intestinal tumor organoids. Cancer Sci. 2017;108(4):678–684. doi: 10.1111/cas.13165

33. Sundaram P, Hultine S, Smith LM, et al. p53-Responsive miR-194 Inhibits Thrombospondin-1 and Promotes Angiogenesis in Colon Cancers. Cancer Res. 2011;71(24):7490–7501. doi: 10.1158/0008-5472.CAN-11-1124

34. Li P, Yang Y, Liu H, et al. MiR-194 functions as a tumor suppressor in laryngeal squamous cell carcinoma by targeting Wee1. J Hematol Oncol. 2017;10(1):32. doi: 10.1186/s13045-017-0402-6

35. Pichiorri F, Suh S-S, Rocci A, et al. Downregulation of p53-inducible microRNAs 192, 194, and 215 Impairs the p53/MDM2 Autoregulatory Loop in Multiple Myeloma Development. Cancer Cell. 2010;18(4):367–381. doi: 10.1016/j.ccr.2010.09.005

36. Wang B, Shen Z, Gao Z, et al. MiR-194, commonly repressed in colorectal cancer, suppresses tumor growth by regulating the MAP4K4/c-Jun/MDM2 signaling pathway. Cell Cycle. 2015;14(7):1046–1058. doi: 10.1080/15384101.2015.1007767

37. Caramuta S, Egyházi S, Rodolfo M, et al. MicroRNA Expression Profiles Associated with Mutational Status and Survival in Malignant Melanoma. J Invest Dermatol. 2010;130(8):2062–2070. doi: 10.1038/jid.2010.63

38. D’Angelo E, Zanon C, Sensi F, et al. miR-194 as predictive biomarker of responsiveness to neoadjuvant chemoradiotherapy in patients with locally advanced rectal adenocarcinoma. Journal of J Clin Pathol. 2017:jclinpath-2017-204690. doi: 10.1136/jclinpath-2017-204690

39. Zhai H, Karaayvaz M, Dong P, et al. Prognostic significance of miR-194 in endometrial cancer. Biomark Res. 2013;(1):12. doi: 10.1186/2050-7771-1-12

40. Basati G, Razavi AE, Pakzad I, Malayeri FA. Circulating levels of the miRNAs, miR-194, and miR-29b, as clinically useful biomarkers for colorectal cancer. Tumour Biol. 2016;37(2):1781–1788. doi: 10.1007/s13277-015-3967-0

41. Giaginis C, Tsoukalas N, Alexandrou P, et al. Clinical significance of farnesoid X receptor expression in thyroid neoplasia. Future Oncol. 2017;13(20):1785–1792. doi: 10.2217/fon-2017-0090

42. Giaginis C, Karandrea D, Alexandrou P, et al. High Farnesoid X Receptor (FXR) expression is a strong and independent prognosticator in invasive breast carcinoma. Neoplasma. 2017;64(4):633–639. doi: 10.4149/neo_2017_420

43. You W, Chen B, Liu X, et al. Farnesoid X receptor, a novel proto-oncogene in non-small cell lung cancer, promotes tumor growth via directly transactivating CCND1. Sci Rep. 2017;7(1):591. doi: 10.1038/s41598-017-00698-4


Supplementary files

1. Fig. 1. The role of FXR in metabolism.
Subject
Type Исследовательские инструменты
View (272KB)    
Indexing metadata ▾
2. Fig. 2. Signal cascades, in which FXR is involved.
Subject
Type Исследовательские инструменты
View (516KB)    
Indexing metadata ▾

Review

For citations:


Bogolyubova A.V., Mayorov A.Y., Mishina E.E., Schwartz A.M., Belousov P.V. Farnesoid X receptor (FXR) as a potential therapeutic target in nonalcoholic fatty liver disease and associated syndromes. Diabetes mellitus. 2017;20(6):449-453. (In Russ.) https://doi.org/10.14341/DM9374

Views: 2151


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)