Differential diagnostic utilities of combined testing for islet cell antibody, glutamic acid decarboxylase antibody, and tyrosine phosphatase antibody
https://doi.org/10.14341/DM9364
Abstract
Background. Beta-cell antibody tests are used for the differential diagnosis of diabetes mellitus. They permit to discriminate between the type 1 diabetes (T1D) and non-autoimmune diabetes types. To choose an appropriate test for ruling in or ruling out the T1D a physician needs to know how conclusive test results are. The most powerful estimate of test conclusiveness is its likelihood ratio (LHR). The higher LHR of a positive result (LHR+), the more posttest probability of T1D; the lower LHR of a negative result (LHR−), the less posttest probability of T1D.
Aims. To compare conclusiveness of single and combined tests for antibodies to islet cells (ICA), glutamate decarboxylase (GADA), and tyrosine phosphatase IA-2 (IA-2A), and to evaluate posttest probabilities of T1D at various pretest probabilities.
Methods. All antibodies were tested in parallel in 169 children and adolescents with a new-onset T1D, and in 169 persons without this disease. ICA, GADA, and IA-2A were determined by indirect immunofluorescence, radioimmune assay, and ELISA, respectively. LHR+ and LHR− were calculated with the MedCalc Statistical Software. Posttest T1D probabilities were calculated from Bayes theorem-based equation.
Results. Among single tests, an ICA test had the greatest LHR+ and the smallest LHR−, and consequently was the most reliable either for ruling in or ruling out the T1D. Among test combinations, an ICA&GADA combination had the greatest LHR+ and was the most suitable for T1D confirmation. The triple combination ICA&GADA&IA-2A had the smallest LHR− and was the most suitable for T1D exclusion.
Conclusions. In the differential diagnosis of diabetes, the most appropriate test for ruling in the T1D is the double combination ICA&GADA. With both antibodies positive, this combination provides the highest posttest T1D probabilities at any pretest probability. The most appropriate test for ruling out the T1D is the triple combination ICA&GADA&IA-2A. With all three antibodies negative, this combination provides the lowest posttest T1D probabilities.
About the Authors
Alexei V. TimofeevPirogov Russian National Research Medical University; Morozov Children's Municipal Clinical Hospital of the Moscow City Health Department
Russian Federation
PhD in Biology
Igor E. Koltunov
Morozov Children's Municipal Clinical Hospital of the Moscow City Health Department
Russian Federation
MD, Professor
Elena E. Petriaikina
Morozov Children's Municipal Clinical Hospital of the Moscow City Health Department
Russian Federation
MD
Irina G. Rybkina
Morozov Children's Municipal Clinical Hospital of the Moscow City Health Department
Russian Federation
Lubov N. Samsonova
Russian Medical Academy of Continuous Professional Education
Russian Federation
MD, Professor
Anatoly N. Tiulpakov
Endocrinology Research Centre
Russian Federation
MD, Professor
Natalia A. Zubkova
Endocrinology Research Centre
Russian Federation
MD
Irina G. Kolomina
Bashliaeva Children's Municipal Clinical Hospital of the Moscow City Health Department
Russian Federation
Evgenia A. Evsjukova
Bashliaeva Children's Municipal Clinical Hospital of the Moscow City Health Department
Russian Federation
Sergey S. Bukin
Bashliaeva Children's Municipal Clinical Hospital of the Moscow City Health Department
Russian Federation
Alexey C. Khrushchev
Pirogov Russian National Research Medical University
Russian Federation
References
1. Вартанян Н.Л., Соминина А.А., Дубинина Т.А., и др. Иммунодиагностика доклинических форм сахарного диабета 1 типа // Сахарный диабет. – 2005. – Т. 8. – №2. – С. 32-34. [Vartanyan NL, Sominina AA, Dubinina TA, et al. Immunodiagnostika doklinicheskikh form sakharnogo diabeta 1 tipa. Diabetes mellitus. 2005;8(2):32-34. (In Russ.)] doi: 10.14341/2072-0351-5779
2. Дедов И.И., Титович Е.В., Кураева Т.Л., и др. Взаимосвязь генетических и иммунологических маркеров у родственников больных сахарным диабетом 1 типа // Сахарный диабет. – 2008. – Т. 11. – №4. – С. 46-49. [Dedov II, Titovich EV, Kuraeva TL, et al. Vzaimosvyaz' geneticheskikh i immunologicheskikh markerov u rodstvennikov bol'nykh sakharnym diabetom 1 tipa. Diabetes mellitus. 2008;11(4):46-49. (In Russ.)] doi: 10.14341/2072-0351-5590
3. Деревянко О.С., Далантаева Н.С., Пекарева Е.В., и др. Аутоиммунные маркеры заболеваний желудочно-кишечного тракта у пациентов с сахарным диабетом 1 типа // Сахарный диабет. – 2013. – Т. 16. – №4. – С. 28-32. [Derevyanko OS, Dalantaeva NS, Pekareva EV, et al. Markers for gastrointestinal autoimmune disorders in patients with type 1 diabetes mellitus. Diabetes mellitus. 2013;16(4):28-32. (In Russ.)] doi: 10.14341/DM2013428-32
4. Ovsyannikova AK, Rymar OD, Shakhtshneider EV, et al. ABCC8-Related Maturity-Onset Diabetes of the Young (MODY12): Clinical Features and Treatment Perspective. Diabetes Ther. 2016;7(3):591-600. doi: 10.1007/s13300-016-0192-9
5. Силко Ю.В., Никонова Т.В., Иванова О.Н., и др. Латентный аутоиммунный диабет взрослых: информативность аутоантител // Терапевтический архив. – 2016. – Т. 88. – №10. – С. 42-45. [Silko YV, Nikonova TV, Ivanova ON, et al. Latent autoimmune diabetes of adults (LADA): The informative value of autoantibodies. Ter Arkh. 2016;88(10):42-45 (In Russ.)] doi: 10.17116/terarkh2016881042-45.
6. Sackett DL. A Primer on the Precision and Accuracy of the Clinical Examination. JAMA. 1992;267(19):2638. doi: 10.1001/jama.1992.03480190080037
7. Riegelman RK. Studying a Study and Testing a Test. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2013.
8. Тимофеев А.В., Горст К.А., Уваров В.Ю., и др. Диагностическая ценность применяющихся в России методов исследования антител к антигенам β-клеток. Классический иммунофлюоресцентный метод определения антител к островковым клеткам, радиоиммунный метод определения антител к глутаматдекарбоксилазе и иммуноферментные методы определения антител к тирозинфосфатазе и инсулину // Сахарный диабет. – 2016. – Т. 19. – №4. – С. 331-340. [Timofeev AV, Gorst KA, Uvarov VY, et al. Diagnostic value of islet autoantibody assays practised in Russia. Classic immunofluorescence islet cell antibody assay, immunoradiometric glutamic acid decarboxylase antibody assay, and ELISA tyrosine phosphatase antibody and insulin antibody assays. Diabetes mellitus. 2016;19(4):331-340. (In Russ.)] doi: 10.14341/DM8032
9. Beckmancoulter.com [Internet]. IRMA anti-GAD IM3651 immunoradiometric assay for the quantitative determination of anti-GAD autoantibodies in human serum [cited 2018 Jan 22]. Available from: https://www.beckmancoulter.com/wsrportal/page/techdocSearch.
10. Medipan.de [Internet]. Medizym anti-IA2 Order Number 3803. Enzyme-linked immunosorbent assay (ELISA) for the quantitative determination of autoantibodies to protein tyrosine phosphatase IA2 (IA2 Ab) in human serum [cited 2018 Jan 22]. Available from: http://www.medipan.de/en/products/eia/#c450.
11. Medcalc.org [Internet]. MedCalc Statistical Software version 17.9.7 [cited 2018 Jan 22]. Available from: https://www.medcalc.org/download.php.
12. Дедов И.И.; Шестакова М.В.; Викулова О.К. Государственный регистр сахарного диабета в Российской Федерации: статус 2014 г. и перспективы развития // Сахарный диабет. – 2015. – Т. 18. – №3. – С. 5-23. [Dedov II, Shestakova MV, Vikulova OK. National register of diabetes mellitus in Russian Federation. Diabetes mellitus. 2015;18(3):5-23. (In Russ.)] doi: 10.14341/DM201535-22
13. Fagan TJ. Letter: nomogram for Bayes theorem. N Engl J Med. 1975;293(5):257.
14. Никонова Т.В., Апанович П.В., Пекарева Е.В., и др. Иммуногенетические аспекты медленно прогрессирующего аутоиммунного диабета у взрослых (LADA) // Сахарный диабет. – 2011. – Т. 14. – №1. – С. 28-33. [Nikonova TV, Apanovich PV, Pekareva EV, et al. Immunogenetic characteristics of LADA. Diabetes mellitus. 2011;14(1):28-33. (In Russ.)] doi: 10.14341/2072-0351-6247
15. Schloot NC, Pham MN, Hawa MI, et al. Inverse Relationship Between Organ-Specific Autoantibodies and Systemic Immune Mediators in Type 1 Diabetes and Type 2 Diabetes: Action LADA 11. Diabetes Care. 2016;39(11):1932-1939. doi: 10.2337/dc16-0293
16. Fabris M, Zago S, Liguori M, et al. Anti-zinc transporter protein 8 autoantibodies significantly improve the diagnostic approach to type 1 diabetes: an Italian multicentre study on paediatric patients. Auto Immun Highlights. 2015;6(1-2):17-22. doi: 10.1007/s13317-015-0068-4
17. Verge CF, Stenger D, Bonifacio E, et al. Combined use of autoantibodies (IA-2 autoantibody, GAD autoantibody, insulin autoantibody, cytoplasmic islet cell antibodies) in type 1 diabetes: Combinatorial Islet Autoantibody Workshop. Diabetes. 1998;47(12):1857-1866. doi: 10.2337/diabetes.47.12.1857
18. Andersson C, Kolmodin M, Ivarsson SA, et al. Islet cell antibodies (ICA) identify autoimmunity in children with new onset diabetes mellitus negative for other islet cell antibodies. Pediatr Diabetes. 2014;15(5):336-344. doi: 10.1111/pedi.12093
19. Velluzzi F, Secci G, Sepe V, et al. Prediction of type 1 diabetes in Sardinian schoolchildren using islet cell autoantibodies: 10-year follow-up of the Sardinian schoolchildren type 1 diabetes prediction study. Acta Diabetol. 2016;53(1):73-79. doi: 10.1007/s00592-015-0751-y
Supplementary files
![]() |
1. Рисунок к статье Тимофеева и соавт 2017_09_28 | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(349KB)
|
Indexing metadata ▾ |
![]() |
2. SUPPLEMENT 1. Demographic and laboratory characteristics of the subjects and inclusion criteria in the study | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(36KB)
|
Indexing metadata ▾ |
![]() |
3. SUPPLEMENT 1. Demographic and laboratory characteristics of the subjects and inclusion criteria in the study | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(36KB)
|
Indexing metadata ▾ |
![]() |
4. SUPPLEMENT 2. Operational parameters of single antobody tests and their combinations | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(34KB)
|
Indexing metadata ▾ |
![]() |
5. SUPPLEMENT 2. Operational parameters of single antobody tests and their combinations | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(27KB)
|
Indexing metadata ▾ |
![]() |
6. SUPPLEMENT 3. The comparison of characteristical curves for antobody tests | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(622KB)
|
Indexing metadata ▾ |
![]() |
7. SUPPLEMENT 3. The comparison of characteristical curves for antobody tests | |
Subject | ||
Type | Research Instrument | |
Download
(474KB)
|
Indexing metadata ▾ |
![]() |
8. SUPPLEMENT 4. Post-test probabilities of type 1 DM with different pre-test probabilities of type 1 DM and with various results of antidody tests with confidence intervals | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(36KB)
|
Indexing metadata ▾ |
![]() |
9. SUPPLEMENT 4. Post-test probabilities of type 1 DM with different pre-test probabilities of type 1 DM and with various results of antidody tests with confidence intervals | |
Subject | ||
Type | Research Instrument | |
Download
(26KB)
|
Indexing metadata ▾ |
![]() |
10. SUPPLEMENT 5. Fagan's nomogram for the approximate evaluation of post-test probabilities of type 1 DM with known likelihood ratios for the antibody tests | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(176KB)
|
Indexing metadata ▾ |
![]() |
11. SUPPLEMENT 5. Fagan's nomogram for the approximate evaluation of post-test probabilities of type 1 DM with known likelihood ratios for the antibody tests | |
Subject | ||
Type | Research Instrument | |
Download
(114KB)
|
Indexing metadata ▾ |
Review
For citations:
Timofeev A.V., Koltunov I.E., Petriaikina E.E., Rybkina I.G., Samsonova L.N., Tiulpakov A.N., Zubkova N.A., Kolomina I.G., Evsjukova E.A., Bukin S.S., Khrushchev A.C. Differential diagnostic utilities of combined testing for islet cell antibody, glutamic acid decarboxylase antibody, and tyrosine phosphatase antibody. Diabetes mellitus. 2018;21(2):74-83. https://doi.org/10.14341/DM9364

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).