Pharmacogenetics of hypoglycemic agents
https://doi.org/10.14341/DM7681
Abstract
Despite the increase in the number of hypoglycemic agents, 35%–40% of patients with diabetes are unable to achieve adequate glycemic control. One of the reasons is the genetic heterogeneity of diabetes mellitus, requiring different treatment approaches; however, the individual metabolic features and sensitivity to drugs also affect the therapeutic effectiveness. The review presents the main results of pharmacogenetic research of several antidiabetic drugs: metformin, sulfonylurea, agonists of glucagon-like peptide-1 and thiazolidinediones.
About the Authors
Irina Vladimirovna KononenkoRussian Federation
MD, PhD
Competing Interests:
Авторы заявляют об отсутствии явных и потенциальных конфликтов (двойственности) интересов, связанных с публикацией данной рукописи.
Aleksandr Yuryevich Mayorov
Russian Federation
MD, PhD
Competing Interests:
Авторы заявляют об отсутствии явных и потенциальных конфликтов (двойственности) интересов, связанных с публикацией данной рукописи.
Ekaterina Olegovna Koksharova
Russian Federation
MD, Assistance Researcher
Competing Interests: Авторы заявляют об отсутствии явных и потенциальных конфликтов (двойственности) интересов, связанных с публикацией данной рукописи.
Marina Vladimirovna Shestakova
Russian Federation
MD, PhD, Professor, Correspondence member o the Russian Academy of Sciecnes
Competing Interests:
Авторы заявляют об отсутствии явных и потенциальных конфликтов (двойственности) интересов, связанных с публикацией данной рукописи.
References
1. Генетический паспорт — основа индивидуальной и предиктивной медицины. / Под ред. В.С. Баранова. — СПб.: Н-Л; 2009. [Geneticheskiy pasport — osnova individual’noy i prediktivnoy meditsiny. Ed. by V.S. Baranov. Saint Petersburg: N-L; 2009.]
2. Дедов И.И., Шестакова М.В. Персонализированная терапия сахарного диабета: путь от болезни к больному. // Терапевтический архив. – 2014. – №10 – С. 4-9. [Dedov II, Shestakova MV. Personalized therapy for diabetes mellitus: the path from disease to the patient. Ter. Arkh. 2014;(10):4-9].
3. Бондарь И.А., Шабельникова О.Ю. Генетические основы сахарного диабета 2 типа // Сахарный диабет. – 2013. – Т. 16. – №4 – C. 11-16. [Bondar’ IA, Shabel’nikova OJ. Genetic framework of type 2 diabetes mellitus. Diabetes mellitus. 2013;16(4):11-16.] doi: 10.14341/DM2013411-16
4. Pollastro C, Ziviello C, Costa V, Ciccodicola A. Pharmacogenomics of Drug Response in Type 2 Diabetes: Toward the Definition of Tailored Therapies? PPAR Res. 2015;2015:415149. doi: 10.1155/2015/415149
5. Moore AF, Jablonski KA, McAteer JB, et al. Extension of type 2 diabetes genome-wide association scan results in the diabetes prevention program. Diabetes. 2008;57(9):2503-2510. doi: 10.2337/db08-0284
6. Zhou K, Donnelly LA, Kimber CH, et al. Reduced-function SLC22A1 polymorphisms encoding organic cation transporter 1 and glycemic response to metformin: a GoDARTS study. Diabetes. 2009;58(6):1434-1439. doi: 10.2337/db08-0896
7. Christensen MM, Brasch-Andersen C, Green H, et al. The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet Genomics. 2011;21(12):837-850. doi: 10.1097/FPC.0b013e32834c0010
8. Hirst JA, Farmer AJ, Ali R, et al. Quantifying the effect of metformin treatment and dose on glycemic control. Diabetes Care. 2012;35(2):446-454. doi: 10.2337/dc11-1465
9. Gloyn AL, McCarthy MI. Genetics in Diabetes. Type 2 Diabetes and Related Traits. Front Diabetes. Basel: Karger; 2014. doi:10.1159/000362475
10. DeGorter MK, Xia CQ, Yang JJ, Kim RB. Drug transporters in drug efficacy and toxicity. Annu Rev Pharmacol Toxicol. 2012;52:249-273. doi: 10.1146/annurev-pharmtox-010611-134529
11. Tkac I, Klimcakova L, Javorsky M, et al. Pharmacogenomic association between a variant in SLC47A1 gene and therapeutic response to metformin in type 2 diabetes. Diabetes Obes Metab. 2013;15(2):189-191. doi: 10.1111/j.1463-1326.2012.01691.x
12. Becker ML, Visser LE, van Schaik RH, et al. Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus. Pharmacogenomics J. 2009;9(4):242-247. doi: 10.1038/tpj.2009.15
13. Graham GG, Punt J, Arora M, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50(2):81-98. doi: 10.2165/11534750-000000000-00000
14. Christensen MM, Pedersen RS, Stage TB, et al. A gene-gene interaction between polymorphisms in the OCT2 and MATE1 genes influences the renal clearance of metformin. Pharmacogenet Genomics. 2013;23(10):526-534. doi: 10.1097/FPC.0b013e328364a57d
15. Stocker SL, Morrissey KM, Yee SW, et al. The effect of novel promoter variants in MATE1 and MATE2 on the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacol Ther. 2013;93(2):186-194. doi: 10.1038/clpt.2012.210
16. GoDarts, Group UDPS, Wellcome Trust Case Control C, et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat Genet. 2011;43(2):117-120. doi: 10.1038/ng.735
17. Suzuki K, Yanagawa T, Shibasaki T, Kaniwa N, Hasegawa R, Tohkin M. Effect of CYP2C9 genetic polymorphisms on the efficacy and pharmacokinetics of glimepiride in subjects with type 2 diabetes. Diabetes Res Clin Pract.2006;72(2):148-154. doi: 10.1016/j.diabres.2005.09.019.
18. Zhou K, Donnelly L, Burch L, et al. Loss-of-Function CYP2C9 Variants Improve Therapeutic Response to Sulfonylureas in Type 2 Diabetes: A Go-DARTS Study. Clin Pharmacol Ther. 2010;87(1):52-56. doi: 10.1038/clpt.2009.176
19. Swen JJ, Wessels JA, Krabben A, et al. Effect of CYP2C9 polymorphisms on prescribed dose and time-to-stable dose of sulfonylureas in primary care patients with Type 2 diabetes mellitus. Pharmacogenomics. 2010;11(11):1517-1523. doi: 10.2217/pgs.10.121
20. The Pharmacogenomics Knowledge Base [internet]. Available from: https://www.pharmgkb.org/drug
21. Feng Y, Mao G, Ren X, et al. Ser1369Ala variant in sulfonylurea receptor gene ABCC8 is associated with antidiabetic efficacy of gliclazide in Chinese type 2 diabetic patients. Diabetes Care. 2008;31(10):1939-1944. doi: 10.2337/dc07-2248
22. Hamming KS, Soliman D, Matemisz LC, et al. Coexpression of the type 2 diabetes susceptibility gene variants KCNJ11 E23K and ABCC8 S1369A alter the ATP and sulfonylurea sensitivities of the ATP-sensitive K(+) channel. Diabetes.2009;58(10):2419-2424. doi: 10.2337/db09-0143
23. Holstein A, Hahn M, Korner A, et al. TCF7L2 and therapeutic response to sulfonylureas in patients with type 2 diabetes. BMC Med Genet. 2011;12:30. doi: 10.1186/1471-2350-12-30
24. Pearson ER, Donnelly LA, Kimber C, et al. Variation in TCF7L2 Influences Therapeutic Response to Sulfonylureas: A GoDARTs Study. Diabetes. 2007;56(8):2178-2182. doi: 10.2337/db07-0440
25. Shyangdan DS, Royle P, Clar C et al. Glucagon-like peptide analogues for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2011;(10):CD006423. doi: 10.1002/14651858.CD006423.pub2
26. Herzberg-Schafer S, Heni M, Stefan N, et al. Impairment of GLP1-induced insulin secretion: role of genetic background, insulin resistance and hyperglycaemia. Diabetes Obes Metab. 2012;14 Suppl 3:85-90. doi: 10.1111/j.1463-1326.2012.01648.x
27. Wolford JK, Yeatts KA, Dhanjal SK, et al. Sequence Variation in PPARG May Underlie Differential Response to Troglitazone. Diabetes. 2005;54(11):3319-3325. doi: 10.2337/diabetes.54.11.3319
28. Pan H-J, Reifsnyder P, Vance DE, et al. Pharmacogenetic Analysis of Rosiglitazone-Induced Hepatosteatosis in New Mouse Models of Type 2 Diabetes. Diabetes. 2005;54(6):1854-1862. doi: 10.2337/diabetes.54.6.1854
29. Jacobs RL, Devlin C, Tabas I, Vance DE. Targeted deletion of hepatic CTP:phosphocholine cytidylyltransferase alpha in mice decreases plasma high density and very low density lipoproteins. J Biol Chem. 2004;279(45):47402-47410. doi: 10.1074/jbc.M404027200
30. Holstein A, Plaschke A, Ptak M, et al. Association between CYP2C9 slow metabolizer genotypes and severe hypoglycaemia on medication with sulphonylurea hypoglycaemic agents. Br J Clin Pharmacol. 2005;60(1):103-106. doi: 10.1111/j.1365-2125.2005.02379.x
31. Дедов И.И., Смирнова О.М., Кононенко И.В. Значение результатов полногеномных исследований для первичной профилактики сахарного диабета 2 типа и его осложнений. Персонализированный подход. // Сахарный диабет. – 2014. – Т. 17. – №2 – С. 10-19. [Dedov II, Smirnova OM, Kononenko IV. Significance of the results of genome-wide association studies for primary prevention of type 2 diabetes mellitus and its complications. Personalised approach.Diabetes mellitus. 2014;17(2):10-19.] doi: 10.14341/DM2014210-19
Review
For citations:
Kononenko I.V., Mayorov A.Yu., Koksharova E.O., Shestakova M.V. Pharmacogenetics of hypoglycemic agents. Diabetes mellitus. 2015;18(4):28-34. (In Russ.) https://doi.org/10.14341/DM7681

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).