Preview

Diabetes mellitus

Advanced search

Glycemic disorders and coronary collateral circulation

https://doi.org/10.14341/2072-0351-3592

Abstract

Although collateral circulation is the essential means of perfusion for ischemized myocardium, its efficiency varies substantially within and between the species. There is both experimental and clinical evidence for association of glycemic disorders with inadequate col- lateral circulation. Current article reviews general mechanisms of collateral circulation failure due to such metabolic disturbances with regard for stages of arteriogenesis. We also highlight horizons of further studies in this field.

About the Authors

Ivan Vasil'evich Starostin
Russian Cardiology Research and Production Center, Moscow


K A Talitskiy
Russian Cardiology Research and Production Center, Moscow


O S Bulkina
Russian Cardiology Research and Production Center, Moscow


Yury Alexandrovich Karpov
Russian Cardiology Research and Production Center, Moscow


References

1. Meier P, Hemingway H, Lansky AJ, Knapp G, Pitt B, Seiler C. The impact of the coronary collateral circulation on mortality: a meta- analysis. Eur Heart J. 2012 Mar;33(5):614–621. doi: 10.1093/ eurheartj/ehr308.

2. Meier P, Gloekler S, Zbinden R, Beckh S, de Marchi SF, Zbinden S, Wustmann K, Billinger M, Vogel R, Cook S, Wenaweser P, Togni M, Windecker S, Meier B, Seiler C. Beneficial Effect of Recruitable Collaterals: A 10-Year Follow-Up Study in Patients With Stable Coronary Artery Disease Undergoing Quantitative Collateral Measurements. http://www.ncbi.nlm.nih.gov/ pubmed/21969521Circulation. 2007 Aug 28;116(9):975–983.

3. Helfant RH, Vokonas PS, Gorlin R. Functional importance of the human coronary collateral circulation. N Engl J Med. 1971 Jun 10;284(23):1277–1281.

4. Pohl T, Seiler C, Billinger M, Herren E, Wustmann K, Mehta H, Windecker S, Eberli FR, Meier B. Frequency distribution of collateral flow and factors influencing collateral channel development. Functional collateral channel measurement in 450 patients with coronary artery disease. J Am Coll Cardiol. 2001 Dec;38(7):1872–1878.

5. Yilmaz MB, Caldir V, Guray Y, Guray U, Altay H, Demirkan B, Cay S, Kisacik HL, Korkmaz S. Relation of coronary collateral vessel development in patients with a totally occluded right coronary artery to the metabolic syndrome. Am J Cardiol. 2006 Mar 1;97(5):636–639.

6. Sasmaz H, Yilmaz MB. Coronary collaterals in obese patients: impact of metabolic syndrome. Angiology. 2009 Apr– May;60(2):164–168. doi: 10.1177/0003319708316007.

7. Mouquet F, Cuilleret F, Susen S, Sautière K, Marboeuf P, Ennezat PV, McFadden E, Pigny P, Richard F, Hennache B, Vantyghem MC, Bertrand M, Dallongeville J, Jude B, Van Belle E. Metabolic syndrome and collateral vessel formation in patients with documented occluded coronary arteries: association with hyperglycaemia, insulin-resistance, adiponectin and plasminogen activator inhibitor-1. Eur Heart J. 2009 Apr;30(7):840–849. doi: 10.1093/eurheartj/ehn569.

8. Reed R, Kolz C, Potter B, Rocic P. The mechanistic basis for the disparate effects of angiotensin II on coronary collateral growth. Arterioscler Thromb Vasc Biol. 2008 Jan;28(1):61–67.

9. Weihrauch D, Lohr NL, Mraovic B, Ludwig LM, Chilian WM, Pagel PS, Warltier DC, Kersten JR. Chronic hyperglycemia attenuates coronary collateral development and impairs proliferative properties of myocardial interstitial fluid by production of angiostatin. Circulation. 2004 May 18;109(19):2343–2348.

10. Schaper W. Collateral circulation: past and present. Basic Res Cardiol. 2009 Jan;104(1):5–21. doi: 10.1007/s00395-008- 0760-x.

11. Старостин ИВ, Талицкий КА, Булкина ОС, Парфенова ЕВ, Карпов ЮА. Коллатеральный кровоток в миокарде: роль фактора роста эндотелия сосудов. Кардиология. 2012;52(11):49–55

12. Ali MH, Schumacker PT. Endothelial responses to mechanical stress: where is the mechanosensor? Critical care medicine. 2002 May;30(5 Suppl):S198–206.

13. Nilius B, Droogmans G. Ion channels and their functional role in vascular endothelium. Physiol Rev. 2001 Oct;81(4):1415–1459.

14. Scholz D, Ito W, Fleming I, Deindl E, Sauer A, Wiesnet M, Busse R, Schaper J, Schaper W. Ultrastructure and molecular histology of rabbit hind-limb collateral artery growth (arteriogenesis). Virchows Arch. 2000 Mar;436(3):257–270.

15. Schaper W, Scholz D. Factors regulating arteriogenesis. Arterio- scler Thromb Vasc Biol. 2003 Jul 1;23(7):1143–1151.

16. Cai WJ, Kocsis E, Luo X, Schaper W, Schaper J. Expression of endo- thelial nitric oxide synthase in the vascular wall during arteriogen- esis. Mol Cell Biochem. 2004 Sep;264(1–2):193–200.

17. Arras M, Ito WD, Scholz D, Winkler B, Schaper J, Schaper W. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest. 1998 Jan 1;101(1):40–50.

18. Johnson C, Sung HJ, Lessner SM, Fini ME, Galis ZS. Matrix metalloproteinase-9 is required for adequate angiogenic revascularization of ischemic tissues: potential role in capillary branching. Circ Res. 2004 Feb 6;94(2):262–268.

19. Schaper W. Quo vadis collateral blood flow? A commentary on a highly cited paper. Cardiovasc Res. 2000 Jan 1;45(1):220–223.

20. Scholz D, Cai WJ, Schaper W. Arteriogenesis, a new concept of vascular adaptation in occlusive disease. Angiogenesis. 2001;4(4):247–257.

21. Price RJ, Less JR, Van Gieson EJ, Skalak TC. Hemodynamic stresses and structural remodeling of anastomosing arteriolar networks: design principles of collateral arterioles. Microcirculation. 2002 Apr;9(2):111–124.

22. Дедов ИИ, Шестакова МВ, Александров АА, Галстян ГР, Григорян ОР, Есаян РМ, Калашников ВЮ, Кураева ТЛ, Липатов ДВ, Майоров АЮ, Петеркова ВА, Смирнова ОМ, Старостина ЕГ, Суркова ЕВ, Сухарева ОЮ, Токмакова АЮ, Шамхалова МШ, Ярек-Мартынова ИР. Алгоритмы специализированной медицинской помощи больным сахарным диабетом (5-й выпуск). Сахарный диабет. 2011; (3 приложение 1):4–72.

23. Древаль АВ, Мисникова ИВ, Барсуков ИА. Результаты скрининга нарушений углеводного обмена репрезентативной выборки взрослого населения Московской области. Кто есть кто в медицине. 2008;(6):12–17.

24. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002 Dec 17;106(25):3143–3421.

25. Conway D, Schwartz MA. Lessons from the endothelial junctional mechanosensory complex. F1000 Biol Rep. 2012;4:1. doi: 10.3410/B4-1.

26. Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature. 2005 Sep 15;437(7057):426–431.

27. Conway D, Schwartz MA. Vascular mechanobiology: endothelial cell responses to fluid shear stress. Circ J. 2009 Nov;73(11):1983–1992.

28. Woo CH, Shishido T, McClain C, Lim JH, Li JD, Yang J, Yan C, Abe J. Extracellular signal-regulated kinase 5 SUMOylation antagonizes shear stress-induced antiinflammatory response and endothelial nitric oxide synthase expression in endothelial cells. Circ Res. 2008 Mar 14;102(5):538–545. doi: 10.1161/CIRCRE- SAHA.107.156877.

29. Kelly R, Ruane-O’Hora T, Noble MI, Drake-Holland AJ, Snow HM. Differential inhibition by hyperglycaemia of shear stress- but not acetylcholine-mediated dilatation in the iliac artery of the anaesthe- tized pig. J Physiol. 2006 May 15;573(Pt 1):133–145.

30. Atkins GB, Jain MK. Role of Kruppel-like transcription factors in en- dothelial biology. Circ Res. 2007 Jun 22;100(12):1686–1695.

31. Gouverneur M, Berg B, Nieuwdorp M, Stroes E, Vink H. Vasculo- protective properties of the endothelial glycocalyx: effects of fluid shear stress. J. Intern. Med. 2006;(259):393–400.

32. Matsunaga T, Warltier DC, Weihrauch DW, Moniz M, Tessmer J, Chilian WM. Ischemia-induced coronary collateral growth is depen- dent on vascular endothelial growth factor and nitric oxide. Circula- tion. 2000 Dec 19;102(25):3098–3103.

33. Schierling W, Troidl K, Troidl C, Schmitz-Rixen T, Schaper W, Eiten- müller IK. The role of angiogenic growth factors in arteriogenesis. J Vasc Res. 2009;46(4):365–374. doi: 10.1159/000189797.

34. Toyota E, Warltier DC, Brock T, Ritman E, Kolz C, O'Malley P, Rocic P, Focardi M, Chilian WM. Vascular endothelial growth fac- tor is required for coronary collateral growth in the rat. Circulation. 2005 Oct 4;112(14):2108–2113.

35. Hochberg I, Hoffman A, Levy AP. Regulation of VEGF in diabetic patients with critical limb ischemia. Annals of vascular surgery. 2001 May;15(3):388–392.

36. Tchaikovski V, Olieslagers S, Bohmer FD, Waltenberger J. Diabetes mellitus activates signal transduction pathways resulting in vascular endothelial growth factor resistance of human monocytes. Circulation. 2009 Jul 14;120(2):150–159. doi: 10.1161/CIRCULA- TIONAHA.108.817528.

37. Waltenberger J, Lange J, Kranz A. Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus: A potential predictor for the individual capacity to develop collaterals. Circulation. 2000 Jul 11;102(2):185–190.

38. Bergmann CE, Hoefer IE, Meder B, Roth H, van Royen N, Breit SM, Jost MM, Aharinejad S, Hartmann S, Buschmann IR. Arteriogenesis depends on circulating monocytes and macrophage accumulation and is severely depressed in op/op mice. J Leukoc Biol. 2006 Jul;80(1):59–65.

39. Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med. 2012 Mar 29;366(13):1227–1239. doi: 10.1056/ NEJMra1005073.

40. Diabetic Retinopathy Clinical Research Network, Elman MJ, Aiello LP, Beck RW, Bressler NM, Bressler SB, Edwards AR, Ferris FL 3rd, Friedman SM, Glassman AR, Miller KM, Scott IU, Stockdale CR, Sun JK. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology. 2010 Jun;117(6):1064–1077.e35. doi: 10.1016/j.ophtha.2010.02.031.

41. Nguyen QD, Shah SM, Khwaja AA, Channa R, Hatef E, Do DV, Boyer D, Heier JS, Abraham P, Thach AB, Lit ES, Foster BS, Kruger E, Dugel P, Chang T, Das A, Ciulla TA, Pollack JS, Lim JI, Eliott D, Campochiaro PA; READ-2 Study Group. Two-year outcomes of the Ranibizumab for Edema of the mAcula in Diabetes (READ-2) study. Ophthalmology. 2010 Nov;117(11):2146–2151. doi: 10.1016/j.ophtha.2010.08.016.

42. Michaelides M, Kaines A, Hamilton RD, Fraser-Bell S, Rajendram R, Quhill F, Boos CJ, Xing W, Egan C, Peto T, Bunce C, Leslie RD, Hykin PG. A prospective randomized trial of intravitreal bevacizumab or laser therapy in the management of diabetic macular edema (BOLT study) 12-month data: report 2. Ophthalmology. 2010 Jun;117(6):1078–1086.e2. doi: 10.1016/j.ophtha.2010.03.045.

43. Heil M, Schaper W. Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis). Circ Res. 2004 Sep 3;95(5):449–458.

44. Schaper W, Schaper J. Arteriogenesis. Kluwer Academic Publishers, Boston, MA;2004.

45. Persson AB, Buschmann IR. Vascular growth in health and disease. Front Mol Neurosci. 2011;4:14. doi: 10.3389/ fnmol.2011.00014.

46. Wang JS, Yin HJ, Guo CY, Huang Y, Xia CD, Liu Q. Influence of high blood glucose fluctuation on endothelial function of type 2 diabetes mellitus rats and effects of Panax Quinquefolius saponin of stem and leaf. Chin J Integr Med. 2012 May 19. [Epub ahead of print].

47. Ruiter MS, van Golde JM, Schaper NC, Stehouwer CD, Huijberts MS. Diabetes impairs arteriogenesis in the peripheral circulation: review of molecular mechanisms. Clin Sci (Lond). 2010 Jun 8;119(6):225–238. doi: 10.1042/CS20100082.

48. Piemonti L, Calori G, Lattuada G, Mercalli A, Ragogna F, Garancini MP, Ruotolo G, Luzi L, Perseghin G. Association between plasma monocyte chemoattractant protein-1 concentration and cardiovascular disease mortality in middle-aged diabetic and nondiabetic individuals. Diabetes Care. 2009 Nov;32(11):2105–2110. doi: 10.2337/dc09-0763.

49. Dragomir E, Simionescu M. Monocyte chemoattractant protein-1–a major contributor to the inflammatory process associated with diabetes. Arch Physiol Biochem. 2006 Oct–Dec;112(4–5):239–244.

50. Niu J, Kolattukudy PE. Role of MCP-1 in cardiovascular disease: molecular mechanisms and clinical implications. Clin Sci (Lond). 2009 Jul 2;117(3):95–109. doi: 10.1042/CS20080581.

51. van Golde JM, Ruiter MS, Schaper NC, Voo S, Waltenberger J, Backes WH, Post MJ, Huijberts MS. Impaired collateral recruitment and outward remodeling in experimental diabetes. Diabetes. 2008 Oct;57(10):2818–2823. doi: 10.2337/db08-0229.

52. Borgers M, Schaper J, Schaper W. Acute vascular lesions in developing coronary collaterals. Virchows Arch A Pathol Pathol Anat. 1970;351(1):1–11.

53. Wolf C, Cai WJ, Vosschulte R, Koltai S, Mousavipour D, Scholz D, Afsah-Hedjri A, Schaper W, Schaper J. Vascular remodeling and altered protein expression during growth of coronary collateral arteries. J Mol Cell Cardiol. 1998 Nov;30(11):2291–2305.

54. Schaper J, Borgers M, Xhonneux R, Schaper W. Cortisone influences developing collaterals. 1: a morphologic study. Virchows Arch A Pathol Pathol Anat. 1973 Dec 14;361(4):263–282.

55. Hanzu FA, Palomo M, Kalko SG, Parrizas M, Garaulet M, Escolar G, Gomis R, Diaz-Ricart M. Translational evidence of endothelial damage in obese individuals: inflammatory and prothrombotic responses. J Thromb Haemost. 2011 Jun;9(6):1236–1245. doi: 10.1111/j.1538-7836.2011.04285.x.

56. Gao X, Belmadani S, Picchi A, Xu X, Potter BJ, Tewari-Singh N, Capobianco S, Chilian WM, Zhang C. Tumor necrosis factor-alpha induces endothelial dysfunction in Lepr(db) mice. Circulation. 2007 Jan 16;115(2):245–254.

57. Yang J, Park Y, Zhang H, Gao X, Wilson E, Zimmer W, Abbott L, Zhang C. Role of MCP-1 in tumor necrosis factor-alphainduced endothelial dysfunction in type 2 diabetic mice. American journal of physiology. Am J Physiol Heart Circ Physiol. 2009 Oct;297(4):H1208–216. doi: 10.1152/ajpheart.00396.2009.

58. Ding H, Triggle CR. Endothelial cell dysfunction and the vascular complications associated with type 2 diabetes: assessing the health of the endothelium. Vasc Health Risk Manag. 2005;1(1):55–71.

59. Guerci B, Böhme P, Kearney-Schwartz A, Zannad F, Drouin P. Endothelial dysfunction and type 2 diabetes. Part 2: altered endothelial function and the effects of treatments in type 2 diabetes mellitus. Diabetes Metab. 2001 Sep;27(4 Pt 1):436–447.

60. Angulo J, Rodriguez-Manas L, Peiro C, Neira M, Marin J, Sanchez-Ferrer CF. Impairment of nitric oxide-mediated relaxations in anaesthetized autoperfused streptozotocin-induced diabetic rats. Naunyn Schmiedebergs Arch Pharmacol. 1998 Nov;358(5):529–537.

61. Crijns FR, Struijker Boudier HA, Wolffenbuttel BH. Arteriolar reactiv- ity in conscious diabetic rats: influence of aminoguanidine treatment. Diabetes. 1998 Jun;47(6):918–923.

62. Rissanen TT, Markkanen JE, Arve K, Rutanen J, Kettunen MI, Vajanto I, Jauhiainen S, Cashion L, Gruchala M, Närvänen O, Taipale P, Kauppinen RA, Rubanyi GM, Ylä-Herttuala S. Fibroblast growth factor 4 induces vascular permeability, angiogenesis and arteriogenesis in a rabbit hindlimb ischemia model. FASEB J. 2003 Jan;17(1):100–102.

63. Carr CL, Qi Y, Davidson B, Chadderdon S, Jayaweera AR, Belcik JT, Benner C, Xie A, Lindner JR. Dysregulated selectin expression and monocyte recruitment during ischemia-related vascular remodeling in diabetes mellitus. Arterioscler Thromb Vasc Biol. 2011 Nov;31(11):2526–2533. doi: 10.1161/AT- VBAHA.111.230177.

64. Kocaman SA, Sahinarslan A, Akyel A, Timurkaynak T, Boyaci B, Cengel A. The association of circulating monocyte count with coronary collateral growth in patients with diabetes mellitus. Acta Diabetol. 2010 Mar;47(1):49–54. doi: 10.1007/s00592-009-0097-4.

65. Cai WJ, Kocsis E, Wu X, Rodríguez M, Luo X, Schaper W, Schaper J. Remodeling of the vascular tunica media is essential for development of collateral vessels in the canine heart. Mol Cell Biochem. 2004 Sep;264(1–2):201–210.

66. Reed R, Potter B, Smith E, Jadhav R, Villalta P, Jo H, Rocic P. Redox-sensitive Akt and Src regulate coronary collateral growth in metabolic syndrome. Am J Physiol Heart Circ Physiol. 2009 Jun;296(6):H1811–1821. doi: 10.1152/ajpheart.00920.2008.

67. Kadoglou NP, Daskalopoulou SS, Perrea D, Liapis CD. Matrix metalloproteinases and diabetic vascular complications. Angiology. 2005 Mar–Apr;56(2):173–189.

68. Death AK, Fisher EJ, McGrath KC, Yue DK. High glucose alters matrix metalloproteinase expression in two key vascular cells: potential impact on atherosclerosis in diabetes. Atherosclerosis. 2003 Jun;168(2):263–269.

69. Taniyama Y, Morishita R, Hiraoka K, Aoki M, Nakagami H, Yamasaki K, Matsumoto K, Nakamura T, Kaneda Y, Ogihara T. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat diabetic hind limb ischemia model: molecular mechanisms of delayed angiogenesis in diabetes. Circulation. 2001 Nov 6;104(19):2344–2350.

70. Howard EW, Benton R, Ahern-Moore J, Tomasek JJ. Cellular contraction of collagen lattices is inhibited by nonenzymatic glycation. Exp Cell Res. 1996 Oct 10;228(1):132–137.

71. Dodd T, Jadhav R, Wiggins L, Stewart J, Smith E, Russell JC, Rocic P. MMPs 2 and 9 are essential for coronary collateral growth and are prominently regulated by p38 MAPK. J Mol Cell Cardiol. 2011 Dec;51(6):1015–1025. doi: 10.1016/j.yjmcc.2011.08.012.

72. Sodha NR, Clements RT, Boodhwani M, Xu SH, Laham RJ, Bianchi C, Sellke FW. Endostatin and angiostatin are increased in diabetic patients with coronary artery disease and associated with impaired coronary collateral formation. Am J Physiol Heart Circ Physiol. 2009 Feb;296(2):H428-434. doi: 10.1152/ajp- heart.00283.2008.

73. Mukhopadhyay CK, Chatterjee IB. Free metal ion-independent oxidative damage of collagen. Protection by ascorbic acid. J Biol Chem. 1994 Dec 2;269(48):30200–30205.

74. Bir SC, Fujita M, Marui A, Hirose K, Arai Y, Sakaguchi H, Huang Y, Esaki J, Ikeda T, Tabata Y, Komeda M. New therapeutic approach for impaired arteriogenesis in diabetic mouse hindlimb ischemia. Circ J. 2008 Apr;72(4):633–640.

75. Huang Y, Marui A, Sakaguchi H, Esaki J, Arai Y, Hirose K, Bir SC, Horiuchi H, Maruyama T, Ikeda T, Tabata Y, Komeda M. Sustained release of prostaglandin E1 potentiates the impaired therapeutic angiogenesis by basic fibroblast growth factor in diabetic murine hindlimb ischemia. Circ J. 2008 Oct;72(10):1693–1699.

76. Chen JX, Stinnett A. Disruption ofAng-1/Tie-2 signaling contributes to the impaired myocardial vascular maturation and angiogenesis in type II diabetic mice. Arterioscler Thromb Vasc Biol. 2008 Sep;28(9):1606–1613. doi: 10.1161/ATVBAHA.108.169235.

77. Panchatcharam M, Miriyala S, Yang F, Leitges M, Chrzanowska-Wodnicka M, Quilliam LA, Anaya P, Morris AJ, Smyth SS. Enhanced proliferation and migration of vascular smooth muscle cells in response to vascular injury under hyperglycemic conditions is controlled by beta3 integrin signaling. Int J Biochem Cell Biol. 2010 Jun;42(6):965–974. doi: 10.1016/j.biocel.2010.02.009.

78. Madi HA, Riches K, Warburton P, O'Regan DJ, Turner NA, Porter KE. Inherent differences in morphology, proliferation and migration in saphenous vein smooth muscle cells cultured from nondiabetic and Type 2 diabetic patients. American journal of physiology. Am J Physiol Cell Physiol. 2009 Nov;297(5):C1307–1317. doi: 10.1152/ajpcell.00608.2008.

79. Cai W, Schaper W. Mechanisms of arteriogenesis. Acta Biochim Biophys Sin (Shanghai). 2008 Aug;40(8):681–692.

80. Takehara K. Growth regulation of skin fibroblasts. J Dermatol Sci. 2000 Dec;24 Suppl 1:S70–77.

81. Mansbridge JN, Liu K, Pinney RE, Patch R, Ratcliffe A, Naughton GK. Growth factors secreted by fibroblasts: role in healing diabetic foot ulcers. Diabetes Obes Metab. 1999 Sep;1(5):265–279.

82. Lerman OZ, Galiano RD, Armour M, Levine JP, Gurtner GC. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia. Am J Pathol. 2003 Jan;162(1):303–312.

83. Meisner JK, Price RJ. Spatial and temporal coordination of bone marrow-derived cell activity during arteriogenesis: regulation of the endogenous response and therapeutic implications. Microcirculation. 2010 Nov;17(8):583–599. doi: 10.1111/j.1549- 8719.2010.00051.x.

84. Isalan M. Systems biology: A cell in a computer. Nature. 2012 Aug 2;488(7409):40–41. doi: 10.1038/488040a.


Review

For citations:


Starostin I.V., Talitskiy K.A., Bulkina O.S., Karpov Yu.A. Glycemic disorders and coronary collateral circulation. Diabetes mellitus. 2013;16(1):19-26. (In Russ.) https://doi.org/10.14341/2072-0351-3592

Views: 2598


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)