Ipragliflozin improves the hepatic outcomes of patients with diabetes with NAFLD
https://doi.org/10.14341/DM13340
Abstract
Sodium glucose cotransporter-2 inhibitors (SGLT2is) are now widely used to treat diabetes, but their effects on nonalcoholic fatty liver disease (NAFLD) remain to be determined. We aimed to evaluate the effects of SGLT2is on the pathogenesis of NAFLD. A multicenter, randomized, controlled trial was conducted in patients with type 2 diabetes with NAFLD. The changes in glycemic control, obesity, and liver pathology were compared between participants taking ipragliflozin (50 mg/day for 72 weeks; IPR group) and participants being managed without SGLT2is, pioglitazone, glucagon-like peptide-1 analogs, or insulin (CTR group). In the IPR group (n = 25), there were significant decreases in hemoglobin A1c (HbA1c) and body mass index (BMI) during the study (HbA1c, -0.41%, P < 0.01; BMI, -1.06 kg/m2, P < 0.01), whereas these did not change in the CTR group (n = 26). Liver pathology was evaluated in 21/25 participants in the IPR/CTR groups, and hepatic fibrosis was found in 17 (81%) and 18 (72%) participants in the IPR and CTR groups at baseline. This was ameliorated in 70.6% (12 of 17) of participants in the IPR group and 22.2 % (4 of 18). of those in the CTR group (P < 0.01). Nonalcoholic steatohepatitis (NASH) resolved in 66.7% of IPR-treated participants and 27.3% of CTR participants. None of the participants in the IPR group developed NASH, whereas 33.3% of the CTR group developed NASH. Conclusion: Long-term ipragliflozin treatment ameliorates hepatic fibrosis in patients with NAFLD. Thus, ipragliflozin might be effective for the treatment and prevention of NASH in patients with diabetes, as well as improving glycemic control and obesity. Therefore, SGLT2is may represent a therapeutic choice for patients with diabetes with NAFLD, but further larger studies are required to confirm these effects. (Hepatology Communications 2022;6:120-132) .
Sodium glucose cotransporter-2 inhibitors (SGLT2is) are now widely used to treat diabetes, but their effects on nonalcoholic fatty liver disease (NAFLD) remain to be determined. We aimed to evaluate the effects of SGLT2is on the pathogenesis of NAFLD. A multicenter, randomized, controlled trial was conducted in patients with type 2 diabetes with NAFLD. The changes in glycemic control, obesity, and liver pathology were compared between participants taking ipragliflozin (50 mg/day for 72 weeks; IPR group) and participants being managed without SGLT2is, pioglitazone, glucagon-like peptide-1 analogs, or insulin (CTR group). In the IPR group (n = 25), there were significant decreases in hemoglobin A1c (HbA1c) and body mass index (BMI) during the study (HbA1c, -0.41%, P < 0.01; BMI, -1.06 kg/m2, P < 0.01), whereas these did not change in the CTR group (n = 26). Liver pathology was evaluated in 21/25 participants in the IPR/CTR groups, and hepatic fibrosis was found in 17 (81%) and 18 (72%) participants in the IPR and CTR groups at baseline. This was ameliorated in 70.6% (12 of 17) of participants in the IPR group and 22.2 % (4 of 18). of those in the CTR group (P < 0.01). Nonalcoholic steatohepatitis (NASH) resolved in 66.7% of IPR-treated participants and 27.3% of CTR participants. None of the participants in the IPR group developed NASH, whereas 33.3% of the CTR group developed NASH.
Conclusion: Long-term ipragliflozin treatment ameliorates hepatic fibrosis in patients with NAFLD. Thus, ipragliflozin might be effective for the treatment and prevention of NASH in patients with diabetes, as well as improving glycemic control and obesity. Therefore, SGLT2is may represent a therapeutic choice for patients with diabetes with NAFLD, but further larger studies are required to confirm these effects. (Hepatology Communications 2022;6:120-132) .
About the Authors
Hirokazu TakahashiJapan
Hirokazu Takahashi, MD, PhD, Liver Center, Saga University Hospital, Faculty of Medicine, Saga University
5-1-1 Nabeshima, Saga City, Saga
Takaomi Kessoku
Japan
Department of Gastroenterology and Hepatology, Graduate School of Medicine
Yokohama
Miwa Kawanaka
Japan
Department of General Internal Medicine Kawasaki Medical Center
Okayama
Michihiro Nonaka
Japan
Department of Gastroenterology and Hepatology
Hatsukaichi
Hideyuki Hyogo
Japan
Department of Gastroenterology and Hepatology
Hatsukaichi
Hideki Fujii
Japan
Department of Gastroenterology and Hepatology, Osaka City Juso Hospital.
Department of Premier Preventive Medicine, Osaka City University Graduate School of Medicine
Osaka
Tomoaki Nakajima
Japan
Department of Hepatology
Sapporo
Kento Imajo
Japan
Department of Gastroenterology and Hepatology, Graduate School of Medicine
Yokohama
Kenichi Tanaka
Japan
Division of Metabolism and Endocrinology, Faculty of Medicine
Saga
Yoshihito Kubotsu
Japan
Division of Metabolism and Endocrinology, Faculty of Medicine
Saga
Hiroshi Isoda
Japan
Liver Center, Saga University Hospital, Faculty of Medicine
Saga
Satoshi Oeda
Japan
Liver Center, Saga University Hospital, Faculty of Medicine
Saga
Osamu Kurai
Japan
Department of Gastroenterology and Hepatology
Osaka
Masato Yoneda
Japan
Department of Gastroenterology and Hepatology, Graduate School of Medicine,
Yokohama
Masafumi Ono
Japan
Internal Medicine
Tokyo
Yoichiro Kitajima
Japan
Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University.
Department of Clinical Gastroenterology, Eguchi Hospital
Saga, Ogi
Ryo Tajiri
Japan
Clinical Research Center
Saga
Ayako Takamori
Clinical Research Center
Saga
Atsushi Kawaguchi
Japan
Education and Research Center for Community Medicine, Faculty of Medicine
Saga
Shinichi Aishima
Japan
Department of Pathology and Microbiology, Faculty of Medicine
Saga
Masayoshi Kage
Japan
Research Center for Innovative Cancer Therapy
Kurume
Atsushi Nakajima
Japan
Department of Gastroenterology and Hepatology, Graduate School of Medicine
Yokohama
Yuichiro Eguchi
Japan
Liver Center, Saga University Hospital, Faculty of Medicine
Saga
Keizo Anzai
Japan
Keizo Anzai, MD, PhD, Division of Metabolism and Endocrinology, Faculty of Medicine
5-1-1 Nabeshima, Saga City, Saga
References
1. Younossi Z, Tacke F, Arrese M, et al. Global Perspectives on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Hepatology. 2019;69(6):2672-2682. doi: https://doi.org/10.1002/hep.30251
2. Younossi ZM, Blissett D, Blissett R, et al. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology. 2016;64(5):1577-1586. doi: https://doi.org/10.1002/hep.28785
3. Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 2018;67(1):123-133. doi: https://doi.org/10.1002/hep.29466
4. Chalasani N, Wilson L, Kleiner DE, et al. Relationship of steatosis grade and zonal location to histological features of steatohepatitis in adult patients with nonalcoholic fatty liver disease. J Hepatol. 2008;48(5):829-834. doi: https://doi.org/10.1016/j.jhep.2008.01.016
5. Mantovani A, Byrne CD, Bonora E, Targher G. Nonalcoholic Fatty Liver Disease and Risk of Incident Type 2 Diabetes: A Meta-analysis. Diabetes Care. 2018;41(2):372-382. doi: https://doi.org/10.2337/dc17-1902
6. Dyson J, Jaques B, Chattopadyhay D, et al. Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. J Hepatol. 2014;60(1):110-117. doi: https://doi.org/10.1016/j.jhep.2013.08.011
7. Lonardo A, Nascimbeni F, Mantovani A, Targher G. Hypertension, diabetes, atherosclerosis and NASH: Cause or consequence? J Hepatol. 2018;68(2):335-352. doi: https://doi.org/10.1016/j.jhep.2017.09.021
8. Angulo P, Hui JM, Marchesini G, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. 2007;45(4):846-854. doi: https://doi.org/10.1002/hep.21496
9. Dulai PS, Singh S, Patel J, et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis. Hepatology. 2017;65(5):1557-1565. doi: https://doi.org/10.1002/hep.29085
10. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117-2128. doi: https://doi.org/10.1056/NEJMoa1504720
11. Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med. 2016;375(4):323-334. doi: https://doi.org/10.1056/NEJMoa1515920
12. Mahaffey KW, Neal B, Perkovic V, et al. Canagliflozin for Primary and Secondary Prevention of Cardiovascular Events: Results From the CANVAS Program (Canagliflozin Cardiovascular Assessment Study). Circulation. 2018;137(4):323-334. doi: https://doi.org/10.1161/CIRCULATIONAHA.117.032038
13. Buse JB, Wexler DJ, Tsapas A, et al. 2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) [published correction appears in Diabetologia. 2020 Aug;63(8):1667. doi: https://doi.org/10.1007/s00125-020-05151-2.]. Diabetologia. 2020;63(2):221-228. doi: https://doi.org/10.1007/s00125-019-05039-w
14. Lai LL, Vethakkan SR, Nik Mustapha NR, Mahadeva S, Chan WK. Empagliflozin for the Treatment of Nonalcoholic Steatohepatitis in Patients with Type 2 Diabetes Mellitus. Dig Dis Sci. 2020;65(2):623-631. doi: https://doi.org/10.1007/s10620-019-5477-1
15. Akuta N, Kawamura Y, Watanabe C, et al. Impact of sodium glucose cotransporter 2 inhibitor on histological features and glucose metabolism of non-alcoholic fatty liver disease complicated by diabetes mellitus. Hepatol Res. 2019;49(5):531-539. doi: https://doi.org/10.1111/hepr.13304
16. Tuttle KR, Bakris GL, Bilous RW, et al. Diabetic kidney disease: a report from an ADA Consensus Conference. Diabetes Care. 2014;37(10):2864-2883. doi: https://doi.org/10.2337/dc14-1296
17. Haffner SM, Kennedy E, Gonzalez C, Stern MP, Miettinen H. A prospective analysis of the HOMA model. The Mexico City Diabetes Study. Diabetes Care. 1996;19(10):1138-1141. doi: https://doi.org/10.2337/diacare.19.10.1138
18. Murawaki Y, Ikuta Y, Koda M, Yamada S, Kawasaki H. Comparison of serum 7S fragment of type IV collagen and serum central triplehelix of type IV collagen for assessment of liver fibrosis in patients with chronic viral liver disease. J Hepatol. 1996;24(2):148-154. doi: https://doi.org/10.1016/s0168-8278(96)80023-7
19. Toshima T, Shirabe K, Ikegami T, et al. A novel serum marker, glycosylated Wisteria floribunda agglutinin-positive Mac-2 binding protein (WFA(+)-M2BP), for assessing liver fibrosis. J Gastroenterol. 2015;50(1):76-84. doi: https://doi.org/10.1007/s00535-014-0946-y
20. Yoshizumi T, Nakamura T, Yamane M, et al. Abdominal fat: standardized technique for measurement at CT. Radiology. 1999;211(1):283-286. doi: https://doi.org/10.1148/radiology.211.1.r99ap15283
21. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313-1321. doi: https://doi.org/10.1002/hep.20701
22. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94(9):2467-2474. doi: https://doi.org/10.1111/j.1572-0241.1999.01377.x
23. Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999;116(6):1413-1419. doi: https://doi.org/10.1016/s0016-5085(99)70506-8
24. Maegawa H, Tobe K, Tabuchi H, Nakamura I. Baseline characteristics and interim (3-month) efficacy and safety data from STELLA-LONG TERM, a long-term post-marketing surveillance study of ipragliflozin in Japanese patients with type 2 diabetes in real-world clinical practice [published correction appears in Expert Opin Pharmacother. 2016 Oct;17(15):iii-iv. doi: 10.1080/14656566.2016.1238677.]. Expert Opin Pharmacother. 2016;17(15):1985-1994. doi: https://doi.org/10.1080/14656566.2016.1217994
25. Schwartz SL, Akinlade B, Klasen S, Kowalski D, Zhang W, Wilpshaar W. Safety, pharmacokinetic, and pharmacodynamic profiles of ipragliflozin (ASP1941), a novel and selective inhibitor of sodiumdependent glucose co-transporter 2, in patients with type 2 diabetes mellitus. Diabetes Technol Ther. 2011;13(12):1219-1227. doi: https://doi.org/10.1089/dia.2011.0012
26. Kashiwagi A, Kazuta K, Goto K, Yoshida S, Ueyama E, Utsuno A. Ipragliflozin in combination with metformin for the treatment of Japanese patients with type 2 diabetes: ILLUMINATE, a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2015;17(3):304-308. doi: https://doi.org/10.1111/dom.12331
27. Li B, Wang Y, Ye Z, et al. Effects of Canagliflozin on Fatty Liver Indexes in Patients with Type 2 Diabetes: A Meta-analysis of Randomized Controlled Trials. J Pharm Pharm Sci. 2018;21(1):222-235. doi: https://doi.org/10.18433/jpps29831
28. Sattar N, Fitchett D, Hantel S, George JT, Zinman B. Empagliflozin is associated with improvements in liver enzymes potentially consistent with reductions in liver fat: results from randomised trials including the EMPA-REG OUTCOME® trial. Diabetologia. 2018;61(10):2155-2163. doi: https://doi.org/10.1007/s00125-018-4702-3
29. Lee PCH, Gu Y, Yeung MY, et al. Dapagliflozin and Empagliflozin Ameliorate Hepatic Dysfunction Among Chinese Subjects with Diabetes in Part Through Glycemic Improvement: A Single-Center, Retrospective, Observational Study. Diabetes Ther. 2018;9(1):285-295. doi: https://doi.org/10.1007/s13300-017-0355-3
30. Kurinami N, Sugiyama S, Yoshida A, et al. Dapagliflozin significantly reduced liver fat accumulation associated with a decrease in abdominal subcutaneous fat in patients with inadequately controlled type 2 diabetes mellitus. Diabetes Res Clin Pract. 2018;142:254-263. doi: https://doi.org/10.1016/j.diabres.2018.05.017
31. Shibuya T, Fushimi N, Kawai M, et al. Luseogliflozin improves liver fat deposition compared to metformin in type 2 diabetes patients with non-alcoholic fatty liver disease: A prospective randomized controlled pilot study. Diabetes Obes Metab. 2018;20(2):438-442. doi: https://doi.org/10.1111/dom.13061
32. Cusi K, Bril F, Barb D, et al. Effect of canagliflozin treatment on hepatic triglyceride content and glucose metabolism in patients with type 2 diabetes. Diabetes Obes Metab. 2019;21(4):812-821. doi: https://doi.org/10.1111/dom.13584
33. Tahara A, Kondo Y, Takasu T, Tomiyama H. Effects of the SGLT2 inhibitor ipragliflozin on food intake, appetite-regulating hormones, and arteriovenous differences in postprandial glucose levels in type 2 diabetic rats. Biomed Pharmacother. 2018;105:1033-1041. doi: https://doi.org/10.1016/j.biopha.2018.06.062
34. Horie I, Abiru N, Hongo R, et al. Increased sugar intake as a form of compensatory hyperphagia in patients with type 2 diabetes under dapagliflozin treatment. Diabetes Res Clin Pract. 2018;135:178-184. doi: https://doi.org/10.1016/j.diabres.2017.11.016
35. Sumida Y, Murotani K, Saito M, et al. Effect of luseogliflozin on hepatic fat content in type 2 diabetes patients with non-alcoholic fatty liver disease: A prospective, single-arm trial (LEAD trial) [published correction appears in Hepatol Res. 2019 Aug;49(8):957. doi: 10.1111/hepr.13406.]. Hepatol Res. 2019;49(1):64-71. doi: https://doi.org/10.1111/hepr.13236
36. Komiya C, Tsuchiya K, Shiba K, et al. Ipragliflozin Improves Hepatic Steatosis in Obese Mice and Liver Dysfunction in Type 2 Diabetic Patients Irrespective of Body Weight Reduction. PLoS One. 2016;11(3):e0151511. doi: https://doi.org/10.1371/journal.pone.0151511
37. Honda Y, Imajo K, Kato T, et al. The Selective SGLT2 Inhibitor Ipragliflozin Has a Therapeutic Effect on Nonalcoholic Steatohepatitis in Mice. PLoS One. 2016;11(1):e0146337. doi: https://doi.org/10.1371/journal.pone.0146337
38. Bonner C, Kerr-Conte J, Gmyr V, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med. 2015;21(5):512-517. doi: https://doi.org/10.1038/nm.3828
39. Magnusson I, Rothman DL, Katz LD, Shulman RG, Shulman GI. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest. 1992;90(4):1323-1327. doi: https://doi.org/10.1172/JCI115997
40. Perry RJ, Zhang D, Guerra MT, et al. Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis. Nature. 2020;579(7798):279-283. doi: https://doi.org/10.1038/s41586-020-2074-6
41. Sawada Y, Izumida Y, Takeuchi Y, et al. Effect of sodiumglucose cotransporter 2 (SGLT2) inhibition on weight loss is partly mediated by liver-brain-adipose neurocircuitry. Biochem Biophys Res Commun. 2017;493(1):40-45. doi: https://doi.org/10.1016/j.bbrc.2017.09.081
42. Patel V, Joharapurkar A, Kshirsagar S, et al. Coagonist of glucagonlike peptide-1 and glucagon receptors ameliorates nonalcoholic fatty liver disease. Can J Physiol Pharmacol. 2018;96(6):587-596. doi: https://doi.org/10.1139/cjpp-2017-0683
43. Seghieri M, Christensen AS, Andersen A, Solini A, Knop FK, Vilsbøll T. Future Perspectives on GLP-1 Receptor Agonists and GLP-1/glucagon Receptor Co-agonists in the Treatment of NAFLD. Front Endocrinol (Lausanne). 2018;9:649. doi: https://doi.org/10.3389/fendo.2018.00649
44. Yip WW, Burt AD. Alcoholic liver disease. Semin Diagn Pathol. 2006;23(3-4):149-160. doi: https://doi.org/10.1053/j.semdp.2006.11.002
45. Lackner C, Gogg-Kamerer M, Zatloukal K, Stumptner C, Brunt EM, Denk H. Ballooned hepatocytes in steatohepatitis: the value of keratin immunohistochemistry for diagnosis. J Hepatol. 2008;48(5):821-828. doi: https://doi.org/10.1016/j.jhep.2008.01.026
46. Maeda S, Matsui T, Takeuchi M, Yamagishi S. Sodium-glucose cotransporter 2-mediated oxidative stress augments advanced glycation end products-induced tubular cell apoptosis. Diabetes Metab Res Rev. 2013;29(5):406-412. doi: https://doi.org/10.1002/dmrr.2407
47. Hosokawa K, Takata T, Sugihara T, et al. Ipragliflozin Ameliorates Endoplasmic Reticulum Stress and Apoptosis through Preventing Ectopic Lipid Deposition in Renal Tubules. Int J Mol Sci. 2019;21(1):190. doi: https://doi.org/10.3390/ijms21010190
48. Bessho R, Takiyama Y, Takiyama T, et al. Hypoxia-inducible factor-1α is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy. Sci Rep. 2019;9(1):14754. doi: https://doi.org/10.1038/s41598-019-51343-1
49. Nelson JE, Wilson L, Brunt EM, et al. Relationship between the pattern of hepatic iron deposition and histological severity in nonalcoholic fatty liver disease. Hepatology. 2011;53(2):448-457. doi: https://doi.org/10.1002/hep.24038
50. Handa P, Morgan-Stevenson V, Maliken BD, et al. Iron overload results in hepatic oxidative stress, immune cell activation, and hepatocellular ballooning injury, leading to nonalcoholic steatohepatitis in genetically obese mice. Am J Physiol Gastrointest Liver Physiol. 2016;310(2):G117-G127. doi: https://doi.org/10.1152/ajpgi.00246.2015
Supplementary files
|
1. Рисунок 1. Блок-схема распределения участников исследования. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(732KB)
|
Indexing metadata ▾ |
|
2. Рисунок 2. Изменения параметров, использованных для оценки показателя №1, относительно исходного состояния. Изображены средние изменения концентрации HbA1c (А), глюкозы плазмы натощак (В), ИМТ (С), площади висцерального жира (В), площади подкожного жира (Е) и концентрации ферритина в сыворотке (F) в группе ИПР (красная линия) и контрольной группе (синяя линия) относительно исходного уровня. Результаты представлены в виде среднего значения и стандартного отклонения. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(733KB)
|
Indexing metadata ▾ |
|
3. Рисунок 3. Изменения параметров, использованных для оценки показателя №2 относительно исходного уровня. Изображены средние изменения АСТ (А), АЛТ (В), ГГТ (С), общего билирубина (D), M2BPGi (Е) и домена 7s коллагена 4-го типа (F) в группе ИПР (красная линия) и контрольной группе (синяя линия) относительно исходного уровня. Результаты представлены в виде среднего значения и стандартного отклонения. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(366KB)
|
Indexing metadata ▾ |
|
4. Рисунок 4. Результаты исследования биопсии печени. (А–D) Результаты патологоанатомического исследования биопсий всех участников для оценки показателя №2 (ИПР, n=21 vs. КОНТР, n=25). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(411KB)
|
Indexing metadata ▾ |
|
5. Рисунок 5. Итоговые патоморфологические изменения в группе ИПР и контрольной группе. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(418KB)
|
Indexing metadata ▾ |
|
6. Дополнительный рисунок 1. Изменение параметров исследуемого показателя 2 от исходного периода | |
Subject | ||
Type | Исследовательские инструменты | |
View
(672KB)
|
Indexing metadata ▾ |
|
7. Дополнительный рисунок 2. Оценка биоптатов печени | |
Subject | ||
Type | Исследовательские инструменты | |
View
(396KB)
|
Indexing metadata ▾ |
|
8. Дополнительный рисунок 3. Патанатомическая конечная точка (баллуннинг и фиброз) и изменения уровня гемоглобина A1c и ИМТ между исходным уровнем и 72 неделями у отдельных пациентов. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(946KB)
|
Indexing metadata ▾ |
Review
For citations:
Takahashi H., Kessoku T., Kawanaka M., Nonaka M., Hyogo H., Fujii H., Nakajima T., Imajo K., Tanaka K., Kubotsu Y., Isoda H., Oeda S., Kurai O., Yoneda M., Ono M., Kitajima Y., Tajiri R., Takamori A., Kawaguchi A., Aishima Sh., Kage M., Nakajima A., Eguchi Yu., Anzai K. Ipragliflozin improves the hepatic outcomes of patients with diabetes with NAFLD. Diabetes mellitus. 2025;28(2):210-227. (In Russ.) https://doi.org/10.14341/DM13340

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).