Preview

Diabetes mellitus

Advanced search

Ipragliflozin improves the hepatic outcomes of patients with diabetes with NAFLD

https://doi.org/10.14341/DM13340

Abstract

Sodium glucose cotransporter-2 inhibitors (SGLT2is) are now widely used to treat diabetes, but their effects on nonalcoholic fatty liver disease (NAFLD) remain to be determined. We aimed to evaluate the effects of SGLT2is on the pathogenesis of NAFLD. A multicenter, randomized, controlled trial was conducted in patients with type 2 diabetes with NAFLD. The changes in glycemic control, obesity, and liver pathology were compared between participants taking ipragliflozin (50 mg/day for 72 weeks; IPR group) and participants being managed without SGLT2is, pioglitazone, glucagon-like peptide-1 analogs, or insulin (CTR group). In the IPR group (n = 25), there were significant decreases in hemoglobin A1c (HbA1c) and body mass index (BMI) during the study (HbA1c, -0.41%, P < 0.01; BMI, -1.06 kg/m2, P < 0.01), whereas these did not change in the CTR group (n = 26). Liver pathology was evaluated in 21/25 participants in the IPR/CTR groups, and hepatic fibrosis was found in 17 (81%) and 18 (72%) participants in the IPR and CTR groups at baseline. This was ameliorated in 70.6% (12 of 17) of participants in the IPR group and 22.2 % (4 of 18). of those in the CTR group (P < 0.01). Nonalcoholic steatohepatitis (NASH) resolved in 66.7% of IPR-treated participants and 27.3% of CTR participants. None of the participants in the IPR group developed NASH, whereas 33.3% of the CTR group developed NASH. Conclusion: Long-term ipragliflozin treatment ameliorates hepatic fibrosis in patients with NAFLD. Thus, ipragliflozin might be effective for the treatment and prevention of NASH in patients with diabetes, as well as improving glycemic control and obesity. Therefore, SGLT2is may represent a therapeutic choice for patients with diabetes with NAFLD, but further larger studies are required to confirm these effects. (Hepatology Communications 2022;6:120-132) .

Sodium glucose cotransporter-2 inhibitors (SGLT2is) are now widely used to treat diabetes, but their effects on nonalcoholic fatty liver disease (NAFLD) remain to be determined. We aimed to evaluate the effects of SGLT2is on the pathogenesis of NAFLD. A multicenter, randomized, controlled trial was conducted in patients with type 2 diabetes with NAFLD. The changes in glycemic control, obesity, and liver pathology were compared between participants taking ipragliflozin (50 mg/day for 72 weeks; IPR group) and participants being managed without SGLT2is, pioglitazone, glucagon-like peptide-1 analogs, or insulin (CTR group). In the IPR group (n = 25), there were significant decreases in hemoglobin A1c (HbA1c) and body mass index (BMI) during the study (HbA1c, -0.41%, P < 0.01; BMI, -1.06 kg/m2, P < 0.01), whereas these did not change in the CTR group (n = 26). Liver pathology was evaluated in 21/25 participants in the IPR/CTR groups, and hepatic fibrosis was found in 17 (81%) and 18 (72%) participants in the IPR and CTR groups at baseline. This was ameliorated in 70.6% (12 of 17) of participants in the IPR group and 22.2 % (4 of 18). of those in the CTR group (P < 0.01). Nonalcoholic steatohepatitis (NASH) resolved in 66.7% of IPR-treated participants and 27.3% of CTR participants. None of the participants in the IPR group developed NASH, whereas 33.3% of the CTR group developed NASH.

Conclusion: Long-term ipragliflozin treatment ameliorates hepatic fibrosis in patients with NAFLD. Thus, ipragliflozin might be effective for the treatment and prevention of NASH in patients with diabetes, as well as improving glycemic control and obesity. Therefore, SGLT2is may represent a therapeutic choice for patients with diabetes with NAFLD, but further larger studies are required to confirm these effects. (Hepatology Communications 2022;6:120-132) .

About the Authors

Hirokazu Takahashi
Saga University
Japan

Hirokazu Takahashi, MD, PhD, Liver Center, Saga University Hospital, Faculty of Medicine, Saga University

5-1-1 Nabeshima, Saga City, Saga



Takaomi Kessoku
Yokohama City University
Japan

Department of Gastroenterology and Hepatology, Graduate School of Medicine

Yokohama



Miwa Kawanaka
Kawasaki Medical School
Japan

Department of General Internal Medicine Kawasaki Medical Center

Okayama



Michihiro Nonaka
JA Hiroshima General Hospital
Japan

Department of Gastroenterology and Hepatology

Hatsukaichi



Hideyuki Hyogo
JA Hiroshima General Hospital
Japan

Department of Gastroenterology and Hepatology

Hatsukaichi



Hideki Fujii
Osaka City Juso Hospital; Osaka City University Graduate School of Medicine
Japan

Department of Gastroenterology and Hepatology, Osaka City Juso Hospital.

Department of Premier Preventive Medicine, Osaka City University Graduate School of Medicine

Osaka



Tomoaki Nakajima
Sapporo Kosei General Hospital
Japan

Department of Hepatology

Sapporo



Kento Imajo
Yokohama City University
Japan

Department of Gastroenterology and Hepatology, Graduate School of Medicine

Yokohama



Kenichi Tanaka
Saga University
Japan

Division of Metabolism and Endocrinology, Faculty of Medicine

Saga



Yoshihito Kubotsu
Saga University
Japan

Division of Metabolism and Endocrinology, Faculty of Medicine

Saga



Hiroshi Isoda
Saga University
Japan

Liver Center, Saga University Hospital, Faculty of Medicine

Saga



Satoshi Oeda
Saga University
Japan

Liver Center, Saga University Hospital, Faculty of Medicine

Saga



Osamu Kurai
Osaka City Juso Hospital
Japan

Department of Gastroenterology and Hepatology

Osaka



Masato Yoneda
Yokohama City University
Japan

Department of Gastroenterology and Hepatology, Graduate School of Medicine, 

Yokohama



Masafumi Ono
Tokyo Women’s Medical University Medical Center East
Japan

Internal Medicine

Tokyo



Yoichiro Kitajima
Saga University; Eguchi Hospital
Japan

Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University.

Department of Clinical Gastroenterology, Eguchi Hospital

Saga, Ogi



Ryo Tajiri
Saga University Hospital
Japan

Clinical Research Center

Saga



Ayako Takamori
Saga University Hospital

Clinical Research Center

Saga



Atsushi Kawaguchi
Saga University
Japan

Education and Research Center for Community Medicine, Faculty of Medicine

Saga



Shinichi Aishima
Saga University
Japan

Department of Pathology and Microbiology, Faculty of Medicine

Saga



Masayoshi Kage
Kurume University
Japan

Research Center for Innovative Cancer Therapy

Kurume



Atsushi Nakajima
Yokohama City University
Japan

Department of Gastroenterology and Hepatology, Graduate School of Medicine

Yokohama



Yuichiro Eguchi
Saga University
Japan

Liver Center, Saga University Hospital, Faculty of Medicine

Saga



Keizo Anzai
Saga University
Japan

Keizo Anzai, MD, PhD, Division of Metabolism and Endocrinology, Faculty of Medicine

5-1-1 Nabeshima, Saga City, Saga



References

1. Younossi Z, Tacke F, Arrese M, et al. Global Perspectives on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Hepatology. 2019;69(6):2672-2682. doi: https://doi.org/10.1002/hep.30251

2. Younossi ZM, Blissett D, Blissett R, et al. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology. 2016;64(5):1577-1586. doi: https://doi.org/10.1002/hep.28785

3. Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 2018;67(1):123-133. doi: https://doi.org/10.1002/hep.29466

4. Chalasani N, Wilson L, Kleiner DE, et al. Relationship of steatosis grade and zonal location to histological features of steatohepatitis in adult patients with nonalcoholic fatty liver disease. J Hepatol. 2008;48(5):829-834. doi: https://doi.org/10.1016/j.jhep.2008.01.016

5. Mantovani A, Byrne CD, Bonora E, Targher G. Nonalcoholic Fatty Liver Disease and Risk of Incident Type 2 Diabetes: A Meta-analysis. Diabetes Care. 2018;41(2):372-382. doi: https://doi.org/10.2337/dc17-1902

6. Dyson J, Jaques B, Chattopadyhay D, et al. Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. J Hepatol. 2014;60(1):110-117. doi: https://doi.org/10.1016/j.jhep.2013.08.011

7. Lonardo A, Nascimbeni F, Mantovani A, Targher G. Hypertension, diabetes, atherosclerosis and NASH: Cause or consequence? J Hepatol. 2018;68(2):335-352. doi: https://doi.org/10.1016/j.jhep.2017.09.021

8. Angulo P, Hui JM, Marchesini G, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. 2007;45(4):846-854. doi: https://doi.org/10.1002/hep.21496

9. Dulai PS, Singh S, Patel J, et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis. Hepatology. 2017;65(5):1557-1565. doi: https://doi.org/10.1002/hep.29085

10. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117-2128. doi: https://doi.org/10.1056/NEJMoa1504720

11. Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med. 2016;375(4):323-334. doi: https://doi.org/10.1056/NEJMoa1515920

12. Mahaffey KW, Neal B, Perkovic V, et al. Canagliflozin for Primary and Secondary Prevention of Cardiovascular Events: Results From the CANVAS Program (Canagliflozin Cardiovascular Assessment Study). Circulation. 2018;137(4):323-334. doi: https://doi.org/10.1161/CIRCULATIONAHA.117.032038

13. Buse JB, Wexler DJ, Tsapas A, et al. 2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) [published correction appears in Diabetologia. 2020 Aug;63(8):1667. doi: https://doi.org/10.1007/s00125-020-05151-2.]. Diabetologia. 2020;63(2):221-228. doi: https://doi.org/10.1007/s00125-019-05039-w

14. Lai LL, Vethakkan SR, Nik Mustapha NR, Mahadeva S, Chan WK. Empagliflozin for the Treatment of Nonalcoholic Steatohepatitis in Patients with Type 2 Diabetes Mellitus. Dig Dis Sci. 2020;65(2):623-631. doi: https://doi.org/10.1007/s10620-019-5477-1

15. Akuta N, Kawamura Y, Watanabe C, et al. Impact of sodium glucose cotransporter 2 inhibitor on histological features and glucose metabolism of non-alcoholic fatty liver disease complicated by diabetes mellitus. Hepatol Res. 2019;49(5):531-539. doi: https://doi.org/10.1111/hepr.13304

16. Tuttle KR, Bakris GL, Bilous RW, et al. Diabetic kidney disease: a report from an ADA Consensus Conference. Diabetes Care. 2014;37(10):2864-2883. doi: https://doi.org/10.2337/dc14-1296

17. Haffner SM, Kennedy E, Gonzalez C, Stern MP, Miettinen H. A prospective analysis of the HOMA model. The Mexico City Diabetes Study. Diabetes Care. 1996;19(10):1138-1141. doi: https://doi.org/10.2337/diacare.19.10.1138

18. Murawaki Y, Ikuta Y, Koda M, Yamada S, Kawasaki H. Comparison of serum 7S fragment of type IV collagen and serum central triplehelix of type IV collagen for assessment of liver fibrosis in patients with chronic viral liver disease. J Hepatol. 1996;24(2):148-154. doi: https://doi.org/10.1016/s0168-8278(96)80023-7

19. Toshima T, Shirabe K, Ikegami T, et al. A novel serum marker, glycosylated Wisteria floribunda agglutinin-positive Mac-2 binding protein (WFA(+)-M2BP), for assessing liver fibrosis. J Gastroenterol. 2015;50(1):76-84. doi: https://doi.org/10.1007/s00535-014-0946-y

20. Yoshizumi T, Nakamura T, Yamane M, et al. Abdominal fat: standardized technique for measurement at CT. Radiology. 1999;211(1):283-286. doi: https://doi.org/10.1148/radiology.211.1.r99ap15283

21. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313-1321. doi: https://doi.org/10.1002/hep.20701

22. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94(9):2467-2474. doi: https://doi.org/10.1111/j.1572-0241.1999.01377.x

23. Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999;116(6):1413-1419. doi: https://doi.org/10.1016/s0016-5085(99)70506-8

24. Maegawa H, Tobe K, Tabuchi H, Nakamura I. Baseline characteristics and interim (3-month) efficacy and safety data from STELLA-LONG TERM, a long-term post-marketing surveillance study of ipragliflozin in Japanese patients with type 2 diabetes in real-world clinical practice [published correction appears in Expert Opin Pharmacother. 2016 Oct;17(15):iii-iv. doi: 10.1080/14656566.2016.1238677.]. Expert Opin Pharmacother. 2016;17(15):1985-1994. doi: https://doi.org/10.1080/14656566.2016.1217994

25. Schwartz SL, Akinlade B, Klasen S, Kowalski D, Zhang W, Wilpshaar W. Safety, pharmacokinetic, and pharmacodynamic profiles of ipragliflozin (ASP1941), a novel and selective inhibitor of sodiumdependent glucose co-transporter 2, in patients with type 2 diabetes mellitus. Diabetes Technol Ther. 2011;13(12):1219-1227. doi: https://doi.org/10.1089/dia.2011.0012

26. Kashiwagi A, Kazuta K, Goto K, Yoshida S, Ueyama E, Utsuno A. Ipragliflozin in combination with metformin for the treatment of Japanese patients with type 2 diabetes: ILLUMINATE, a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2015;17(3):304-308. doi: https://doi.org/10.1111/dom.12331

27. Li B, Wang Y, Ye Z, et al. Effects of Canagliflozin on Fatty Liver Indexes in Patients with Type 2 Diabetes: A Meta-analysis of Randomized Controlled Trials. J Pharm Pharm Sci. 2018;21(1):222-235. doi: https://doi.org/10.18433/jpps29831

28. Sattar N, Fitchett D, Hantel S, George JT, Zinman B. Empagliflozin is associated with improvements in liver enzymes potentially consistent with reductions in liver fat: results from randomised trials including the EMPA-REG OUTCOME® trial. Diabetologia. 2018;61(10):2155-2163. doi: https://doi.org/10.1007/s00125-018-4702-3

29. Lee PCH, Gu Y, Yeung MY, et al. Dapagliflozin and Empagliflozin Ameliorate Hepatic Dysfunction Among Chinese Subjects with Diabetes in Part Through Glycemic Improvement: A Single-Center, Retrospective, Observational Study. Diabetes Ther. 2018;9(1):285-295. doi: https://doi.org/10.1007/s13300-017-0355-3

30. Kurinami N, Sugiyama S, Yoshida A, et al. Dapagliflozin significantly reduced liver fat accumulation associated with a decrease in abdominal subcutaneous fat in patients with inadequately controlled type 2 diabetes mellitus. Diabetes Res Clin Pract. 2018;142:254-263. doi: https://doi.org/10.1016/j.diabres.2018.05.017

31. Shibuya T, Fushimi N, Kawai M, et al. Luseogliflozin improves liver fat deposition compared to metformin in type 2 diabetes patients with non-alcoholic fatty liver disease: A prospective randomized controlled pilot study. Diabetes Obes Metab. 2018;20(2):438-442. doi: https://doi.org/10.1111/dom.13061

32. Cusi K, Bril F, Barb D, et al. Effect of canagliflozin treatment on hepatic triglyceride content and glucose metabolism in patients with type 2 diabetes. Diabetes Obes Metab. 2019;21(4):812-821. doi: https://doi.org/10.1111/dom.13584

33. Tahara A, Kondo Y, Takasu T, Tomiyama H. Effects of the SGLT2 inhibitor ipragliflozin on food intake, appetite-regulating hormones, and arteriovenous differences in postprandial glucose levels in type 2 diabetic rats. Biomed Pharmacother. 2018;105:1033-1041. doi: https://doi.org/10.1016/j.biopha.2018.06.062

34. Horie I, Abiru N, Hongo R, et al. Increased sugar intake as a form of compensatory hyperphagia in patients with type 2 diabetes under dapagliflozin treatment. Diabetes Res Clin Pract. 2018;135:178-184. doi: https://doi.org/10.1016/j.diabres.2017.11.016

35. Sumida Y, Murotani K, Saito M, et al. Effect of luseogliflozin on hepatic fat content in type 2 diabetes patients with non-alcoholic fatty liver disease: A prospective, single-arm trial (LEAD trial) [published correction appears in Hepatol Res. 2019 Aug;49(8):957. doi: 10.1111/hepr.13406.]. Hepatol Res. 2019;49(1):64-71. doi: https://doi.org/10.1111/hepr.13236

36. Komiya C, Tsuchiya K, Shiba K, et al. Ipragliflozin Improves Hepatic Steatosis in Obese Mice and Liver Dysfunction in Type 2 Diabetic Patients Irrespective of Body Weight Reduction. PLoS One. 2016;11(3):e0151511. doi: https://doi.org/10.1371/journal.pone.0151511

37. Honda Y, Imajo K, Kato T, et al. The Selective SGLT2 Inhibitor Ipragliflozin Has a Therapeutic Effect on Nonalcoholic Steatohepatitis in Mice. PLoS One. 2016;11(1):e0146337. doi: https://doi.org/10.1371/journal.pone.0146337

38. Bonner C, Kerr-Conte J, Gmyr V, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med. 2015;21(5):512-517. doi: https://doi.org/10.1038/nm.3828

39. Magnusson I, Rothman DL, Katz LD, Shulman RG, Shulman GI. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest. 1992;90(4):1323-1327. doi: https://doi.org/10.1172/JCI115997

40. Perry RJ, Zhang D, Guerra MT, et al. Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis. Nature. 2020;579(7798):279-283. doi: https://doi.org/10.1038/s41586-020-2074-6

41. Sawada Y, Izumida Y, Takeuchi Y, et al. Effect of sodiumglucose cotransporter 2 (SGLT2) inhibition on weight loss is partly mediated by liver-brain-adipose neurocircuitry. Biochem Biophys Res Commun. 2017;493(1):40-45. doi: https://doi.org/10.1016/j.bbrc.2017.09.081

42. Patel V, Joharapurkar A, Kshirsagar S, et al. Coagonist of glucagonlike peptide-1 and glucagon receptors ameliorates nonalcoholic fatty liver disease. Can J Physiol Pharmacol. 2018;96(6):587-596. doi: https://doi.org/10.1139/cjpp-2017-0683

43. Seghieri M, Christensen AS, Andersen A, Solini A, Knop FK, Vilsbøll T. Future Perspectives on GLP-1 Receptor Agonists and GLP-1/glucagon Receptor Co-agonists in the Treatment of NAFLD. Front Endocrinol (Lausanne). 2018;9:649. doi: https://doi.org/10.3389/fendo.2018.00649

44. Yip WW, Burt AD. Alcoholic liver disease. Semin Diagn Pathol. 2006;23(3-4):149-160. doi: https://doi.org/10.1053/j.semdp.2006.11.002

45. Lackner C, Gogg-Kamerer M, Zatloukal K, Stumptner C, Brunt EM, Denk H. Ballooned hepatocytes in steatohepatitis: the value of keratin immunohistochemistry for diagnosis. J Hepatol. 2008;48(5):821-828. doi: https://doi.org/10.1016/j.jhep.2008.01.026

46. Maeda S, Matsui T, Takeuchi M, Yamagishi S. Sodium-glucose cotransporter 2-mediated oxidative stress augments advanced glycation end products-induced tubular cell apoptosis. Diabetes Metab Res Rev. 2013;29(5):406-412. doi: https://doi.org/10.1002/dmrr.2407

47. Hosokawa K, Takata T, Sugihara T, et al. Ipragliflozin Ameliorates Endoplasmic Reticulum Stress and Apoptosis through Preventing Ectopic Lipid Deposition in Renal Tubules. Int J Mol Sci. 2019;21(1):190. doi: https://doi.org/10.3390/ijms21010190

48. Bessho R, Takiyama Y, Takiyama T, et al. Hypoxia-inducible factor-1α is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy. Sci Rep. 2019;9(1):14754. doi: https://doi.org/10.1038/s41598-019-51343-1

49. Nelson JE, Wilson L, Brunt EM, et al. Relationship between the pattern of hepatic iron deposition and histological severity in nonalcoholic fatty liver disease. Hepatology. 2011;53(2):448-457. doi: https://doi.org/10.1002/hep.24038

50. Handa P, Morgan-Stevenson V, Maliken BD, et al. Iron overload results in hepatic oxidative stress, immune cell activation, and hepatocellular ballooning injury, leading to nonalcoholic steatohepatitis in genetically obese mice. Am J Physiol Gastrointest Liver Physiol. 2016;310(2):G117-G127. doi: https://doi.org/10.1152/ajpgi.00246.2015


Supplementary files

1. Рисунок 1. Блок-схема распределения участников исследования.
Subject
Type Исследовательские инструменты
View (732KB)    
Indexing metadata ▾
2. Рисунок 2. Изменения параметров, использованных для оценки показателя №1, относительно исходного состояния. Изображены средние изменения концентрации HbA1c (А), глюкозы плазмы натощак (В), ИМТ (С), площади висцерального жира (В), площади подкожного жира (Е) и концентрации ферритина в сыворотке (F) в группе ИПР (красная линия) и контрольной группе (синяя линия) относительно исходного уровня. Результаты представлены в виде среднего значения и стандартного отклонения.
Subject
Type Исследовательские инструменты
View (733KB)    
Indexing metadata ▾
3. Рисунок 3. Изменения параметров, использованных для оценки показателя №2 относительно исходного уровня. Изображены средние изменения АСТ (А), АЛТ (В), ГГТ (С), общего билирубина (D), M2BPGi (Е) и домена 7s коллагена 4-го типа (F) в группе ИПР (красная линия) и контрольной группе (синяя линия) относительно исходного уровня. Результаты представлены в виде среднего значения и стандартного отклонения.
Subject
Type Исследовательские инструменты
View (366KB)    
Indexing metadata ▾
4. Рисунок 4. Результаты исследования биопсии печени. (А–D) Результаты патологоанатомического исследования биопсий всех участников для оценки показателя №2 (ИПР, n=21 vs. КОНТР, n=25).
Subject
Type Исследовательские инструменты
View (411KB)    
Indexing metadata ▾
5. Рисунок 5. Итоговые патоморфологические изменения в группе ИПР и контрольной группе.
Subject
Type Исследовательские инструменты
View (418KB)    
Indexing metadata ▾
6. Дополнительный рисунок 1. Изменение параметров исследуемого показателя 2 от исходного периода
Subject
Type Исследовательские инструменты
View (672KB)    
Indexing metadata ▾
7. Дополнительный рисунок 2. Оценка биоптатов печени
Subject
Type Исследовательские инструменты
View (396KB)    
Indexing metadata ▾
8. Дополнительный рисунок 3. Патанатомическая конечная точка (баллуннинг и фиброз) и изменения уровня гемоглобина A1c и ИМТ между исходным уровнем и 72 неделями у отдельных пациентов.
Subject
Type Исследовательские инструменты
View (946KB)    
Indexing metadata ▾

Review

For citations:


Takahashi H., Kessoku T., Kawanaka M., Nonaka M., Hyogo H., Fujii H., Nakajima T., Imajo K., Tanaka K., Kubotsu Y., Isoda H., Oeda S., Kurai O., Yoneda M., Ono M., Kitajima Y., Tajiri R., Takamori A., Kawaguchi A., Aishima Sh., Kage M., Nakajima A., Eguchi Yu., Anzai K. Ipragliflozin improves the hepatic outcomes of patients with diabetes with NAFLD. Diabetes mellitus. 2025;28(2):210-227. (In Russ.) https://doi.org/10.14341/DM13340

Views: 399


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)