Markers of inflammation, fibrosis, endothelial dysfunction, and podocytopathy in patients with long-term type 1 diabetes mellitus
https://doi.org/10.14341/DM13332
Abstract
BACKGROUND: A comprehensive assessment of biomarkers involved in the development of systemic inflammation in patients with long-term type 1 diabetes mellitus (T1D), accompanied by the development and progression of cardiac and renal pathology, may allow stratification of patients according to specific inflammatory activity and help in the search for new therapeutic prevention and treatment options.
AIM: To evaluate markers of inflammation, fibrosis, endothelial dysfunction, and podocytopathy in patients with prolonged course of T1D (≥ 20 years).
MATERIALS AND METHODS: The study consisted of 2 stages. In the first stage, a single-center, cross-sectional study of 133 patients was conducted. Of these, 87 patients with 10-year data available were included in the second stage of the study with dynamic assessment of parameters. All patients were examined and treated at the Endocrinology Research Centre of the Ministry of Health of Russia from 2011 to 2024. Patients were divided into several groups: without chronic kidney disease (CKD) and with CKD at different stages. In addition to standard laboratory parameters, the levels of matrix metalloproteinase-9 (MMP-9), brain natriuretic hormone (NT-proBNP), transforming growth factor beta-1 (TGF-β1), asymmetric dimethylarginine (ADMA), monocyte chemotactic factor-1 (MCP-1), osteopontin, and tumor necrosis factor receptors type 1 (TNFRSF1A) and type 2 (TNFRSF1B), cystatin C in blood, nephrin, podocin in urine were studied using commercial kits in accordance with manufacturers’ recommendations. Based on the values of the regression coefficients, the estimated glomerular filtration rate (eGFR) showed an inverse relationship with the development of chronic heart failure (CHF), while podocin exhibited a positive relationship with acute kidney injury (AKI). The risk of CHF decreased with every 1 mL/min/1.73 m² increase in eGFR, OR=1.12 (95% CI: 1.02–1.22, P=0.015). The risk of AKI increased with every 1 ng/mL increase in podocin level, OR = 1.43 (95% CI: 1.01–2.03, P=0.047).
RESULTS: According to the criteria of CKD, preserved kidney function was observed in 43.2% of patients (n=54), the rest were at various stages of CKD. The prevalence of late complications of diabetes among the examined patients was high and increased as renal dysfunction progressed. Individuals with CKD showed increased levels of ADMA (P<0.005), TNFRSF1A and TNFRSF1B (P<0.001) and decreased levels of TGF-β1 (P<0.006) compared with those without CKD. In the dynamic control group (n=87), statistically significant increases in the levels of TGF-β1, nephrin, podocin, a decrease in the estimated glomerular filtration rate (eGFR) (P<0.001), and a statistical trend towards an increase in cystatin C during the follow-up period against the background of progression of renal and cardiovascular pathology were detected. In the same group, an inverse correlation (strong and noticeable) was determined between eGFR and TNFRSF1A and TNFRSF1B, ADMA.
CONCLUSION: In individuals with a long history of T1D, a significant role of factors of endothelial dysfunction, inflammation and fibrosis, podocytopathy in the development and progression of CKD with involvement of the cardiovascular system in the pathological process has been determined.
About the Authors
M. I. YevloyevaRussian Federation
Madina I. Yevloyeva, postgraduate student
11 Dmitry Ulyanov street, 117292 Moscow
M. S. Arutyunova
Russian Federation
Margarita S. Arutyunova
Moscow
L. V. Nikankina
Russian Federation
Larisa V. Nikankina, MD, PhD
Moscow
A. I. Sleptsova
Russian Federation
Arina I. Sleptsova
Moscow
O. N. Naumenko
Russian Federation
Oksana N. Naumenko, MD
Moscow
Z. T. Zuraeva
Russian Federation
Zamira T. Zuraeva, MD, PhD
Moscow
A. S. Severina
Russian Federation
Anastasia S. Severina, MD, PhD, leading research associate
Moscow
N. P. Trubitsyna
Russian Federation
Natalia P. Trubitsyna, MD, PhD, leading research associate
Moscow
M. S. Shamkhalova
Russian Federation
Minara S. Shamkhalova, MD, PhD
Moscow
М. V. Shestakova
Russian Federation
Marina V. Shestakova, MD, PhD, Professor, Academician of the RAS
Moscow
References
1. Gregory GA, Robinson TIG, Linklater SE, et al. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study [published correction appears in Lancet Diabetes Endocrinol. 2022 Nov;10(11):e11. doi: https://doi.org/10.1016/S2213-8587(22)00280-7.]. Lancet Diabetes Endocrinol. 2022;10(10):741-760. doi: https://doi.org/10.1016/S2213-8587(22)00218-2
2. Shamkhalova MS, Vikulova OK, Zheleznyakova AV, et al. Trends in the epidemiology of chronic kidney disease in patients with diabetes in Russian Federation according to the Federal diabetes register (2010–2022). Diabetes mellitus. 2023;26(5):404-417. (In Russ.) doi: https://doi.org/10.14341/DM13090
3. Dedov II, Shestakova MV, Vikulova OK, et al. Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010–2022. Diabetes Mellitus. 2023;26(2):104-123. (In Russ.). doi: https://doi.org/10.14341/DM13035
4. Sagoo MK, Gnudi L. Diabetic Nephropathy: An Overview. Methods Mol Biol. 2020;2067:3-7. doi: https://doi.org/10.1007/978-1-4939-9841-8_1
5. Niewczas MA, Pavkov ME, Skupien J, et al. A signature of circulating inflammatory proteins and development of endstage renal disease in diabetes. Nat Med. 2019;25(5):805-813. doi: https://doi.org/10.1038/s41591-019-0415-5
6. Julián MT, Pérez-Montes de Oca A, Julve J, Alonso N. The double burden: type 1 diabetes and heart failure-a comprehensive review. Cardiovasc Diabetol. 2024;23(1):65. doi: https://doi.org/10.1186/s12933-024-02136-y
7. Riehle C, Bauersachs J. Key inflammatory mechanisms underlying heart failure. Herz. 2019;44(2):96-106. doi: https://doi.org/10.1007/s00059-019-4785-8
8. Jha J, Banal C, Chow B, et al. Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxid Redox Signal. 2016 Oct 20;25(12):657-684. doi: https://doi.org/10.1089/ars.2016.6664
9. Kucka K, Wajant H. Receptor Oligomerization and Its Relevance for Signaling by Receptors of the Tumor Necrosis Factor Receptor Superfamily. Front Cell Dev Biol. 2021;8:615141. doi: https://doi.org/10.3389/fcell.2020.615141
10. Barutta F, Bellini S, Gruden G. Mechanisms of podocyte injury and implications for diabetic nephropathy. Clin Sci (Lond). 2022;136(7):493-520. doi: https://doi.org/10.1042/CS20210625
11. Tuleta I, Frangogiannis NG. Diabetic fibrosis. Biochim Biophys Acta Mol Basis Dis. 2021;1867(4):166044. doi: https://doi.org/10.1016/j.bbadis.2020.166044
12. Pätäri A, Forsblom C, Havana M, et al. Nephrinuria in diabetic nephropathy of type 1 diabetes. Diabetes. 2003;52(12):2969-74. doi: https://doi.org/10.2337/diabetes.52.12.2969
13. Dedov II, Shestakova MV, Mayorov AY, et al. Standards of Specialized Diabetes Care / Edited by Dedov I.I., Shestakova M.V., Mayorov A.Yu. 11th Edition. Diabetes mellitus. 2023;26(2S):1-157. (In Russ.) doi: https://doi.org/10.14341/DM13042
14. Rivetti G, Hursh BE, Miraglia Del Giudice E, Marzuillo P. Acute and chronic kidney complications in children with type 1 diabetes mellitus. Pediatr Nephrol. 2023;38(5):1449-1458. doi: https://doi.org/10.1007/s00467-022-05689-w
15. Jansson Sigfrids F, Groop PH, Harjutsalo V. Incidence rate patterns, cumulative incidence, and time trends for moderate and severe albuminuria in individuals diagnosed with type 1 diabetes aged 0-14 years: a population-based retrospective cohort study [published correction appears in Lancet Diabetes Endocrinol. 2023 Jan;11(1):e1. doi: https://doi/org/10.1016/S2213-8587(22)00347-3.]. Lancet Diabetes Endocrinol. 2022;10(7):489-498. doi: https://doi.org/10.1016/S2213-8587(22)00099-7
16. Pan D, Xu L, Guo M. The role of protein kinase C in diabetic microvascular complications. Front Endocrinol (Lausanne). 2022;13:973058. doi: https://doi.org/10.3389/fendo.2022.973058
17. Gubitosi-Klug R, Gao X, Pop-Busui R, et al.; DCCT/EDIC Research Group. Associations of microvascular complications with the risk of cardiovascular disease in type 1 diabetes. Diabetes Care. 2021;44(7):1499-1505. doi: https://doi.org/10.2337/dc20-3104
18. Kawanami D, Matoba K, Utsunomiya K. Dyslipidemia in diabetic nephropathy. Ren Replace Ther. 2016;2:16. doi: https://doi.org/10.1186/s41100-016-0028-0
19. Krolewski AS, Niewczas MA, Skupien J, et al. Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care. 2014;37(1):226-34. doi: https://doi.org/10.2337/dc13-0985
20. Murakoshi M, Gohda T, Suzuki Y. Circulating Tumor Necrosis Factor Receptors: A Potential Biomarker for the Progression of Diabetic Kidney Disease. Int J Mol Sci. 2020;21(6):1957. doi: https://doi.org/10.3390/ijms21061957
21. Altinova AA, Arslan M, Sepici-Dincel A, et al. Uncomplicated type 1 diabetes is associated with increased asymmetric dimethylarginine concentrations, The Journal of Clinical Endocrinology & Metabolism. 2007;92(5):1881-1885. doi: https://doi.org/10.1210/jc.2006-2643
22. Liu X, Xu X, Shang R, Chen Y. Asymmetric dimethylarginine (ADMA) as an important risk factor for the increased cardiovascular diseases and heart failure in chronic kidney disease. Nitric Oxide. 2018;78:113-120. doi: https://doi.org/10.1016/j.niox.2018.06.004
23. Shvangiradze TA, Bondarenko IZ, Troshina EA, et al. Angiotensin II and transforming growth factor β affect cardiovascular and renal disease in patients with type 2 diabetes mellitus: benefits of dpp-4 inhibitors treatment. Obesity and metabolism. 2019;16(3):55-61. (In Russ.) doi: https://doi.org/10.14341/omet10346
24. Stefoni S, Cianciolo G, Donati G, et al. Low TGF-beta1 serum levels are a risk factor for atherosclerosis disease in ESRD patients. Kidney Int. 2002;61(1):324-35. doi: https://doi.org/10.1046/j.1523-1755.2002.00119.x
25. Zhao L, Zou Y, Liu F. Transforming Growth Factor-Beta1 in Diabetic Kidney Disease. Front Cell Dev Biol. 2020;8:187. doi: https://doi.org/10.3389/fcell.2020.00187
26. Sharma K, McGowan TA. TGF-beta in diabetic kidney disease: role of novel signaling pathways. Cytokine Growth Factor Rev. 2000;11(1-2):115-23. doi: https://doi.org/10.1016/s1359-6101(99)00035-0
27. Yuan Q, Tan RJ, Liu Y. Myofibroblast in kidney fibrosis: origin, activation, and regulation. Adv Exp Med Biol. 2019;1165:253-283. doi: https://doi.org/10.1007/978-981-13-8871-2_12
28. Perkins BA, Ficociello LH, Silva KH, et al. Regression of microalbuminuria in type 1 diabetes. N Engl J Med. 2003;348(23):2285-93. doi: https://doi.org/10.1056/NEJMoa021835
29. Zhang L, Wen Z, Han L, et al. Research Progress on the Pathological Mechanisms of Podocytes in Diabetic Nephropathy. J Diabetes Res. 2020;2020:7504798. doi: https://doi.org/10.1155/2020/7504798
30. Reiser J, Lee HW, Gupta V, Altintas MM. A high-content screening technology for quantitatively studying podocyte dynamics. Adv Chronic Kidney Dis. 2017;24(3):183-188. doi: https://doi.org/10.1053/j.ackd.2017.04.001
31. Garg P. A review of podocyte biology. Am J Nephrol. 2018;47 Suppl 1:3-13. doi: https://doi.org/10.1159/000481633
32. Shankland SJ, Rule AD, Kutz JN, et al. Podocyte senescence and aging. Kidney360. 2023;4(12):1784-1793. doi: https://doi.org/10.34067/KID.0000000000000284
33. Lasagni L, Lazzeri E, Shankland SJ, et al. Podocyte mitosis - a catastrophe. Curr Mol Med. 2013;13(1):13-23. doi: https://doi.org/10.2174/1566524011307010013
Supplementary files
|
1. Рисунок 1. Распределение пациентов с сахарным диабетом 1 типа длительного течения (20 и более лет) в соответствии с расчетной скоростью клубочковой фильтрации и альбуминурией на момент начала исследования (выделены желтым) и при контроле в динамике (выделены зеленым). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(238KB)
|
Indexing metadata ▾ |
Review
For citations:
Yevloyeva M.I., Arutyunova M.S., Nikankina L.V., Sleptsova A.I., Naumenko O.N., Zuraeva Z.T., Severina A.S., Trubitsyna N.P., Shamkhalova M.S., Shestakova М.V. Markers of inflammation, fibrosis, endothelial dysfunction, and podocytopathy in patients with long-term type 1 diabetes mellitus. Diabetes mellitus. 2025;28(2):151-163. (In Russ.) https://doi.org/10.14341/DM13332

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).