Клеточная терапия метаболических заболеваний с использованием графтов адипоцитарного происхождения: экспериментальные подходы и клинические перспективы
https://doi.org/10.14341/DM13331
Аннотация
Метаболические заболевания на сегодняшний день являются существенными факторами инвалидизации и смертности населения в РФ. Современная фармакология предлагает немало инструментов контроля гликемии, однако их эффекты на снижение веса пациентов очень ограничены. Для липодистрофий в настоящее время терапия отсутствует за исключением симптоматической. В связи с этим, развитие тканевой инженерии в сочетании с генетическими технологиями является ключевым фактором в создании новых подходов к терапии метаболических заболеваний. В представленной обзорной статье описываются различные подходы тканевой инженерии к формированию графтов адипоцитарного происхождения. Сегодня для этих целей применяются самые разные клетки — это и мезенхимные стромальные клетки жировой ткани, которые являются прогениторами зрелых адипоцитов и компонентами клеточной ниши жировой ткани, и метаболически здоровые адипоциты, и термогенные адипоциты. Клетки используются как в нативном состоянии, так и с использованием самых различных вариантов генетической модификации. Представленный обзор интегрирует знания о трансплантации различных производных жировой ткани в различных тканеинженерных форматах для терапии основных метаболических заболеваний, к которым относятся липодистрофии, ожирение и сахарный диабет 2 типа. Результаты обзора могут дать существенный импульс к развитию новых подходов к терапии метаболических заболеваний.
Об авторах
Ю. С. СтафеевРоссия
Стафеев Юрий Сергеевич - к.б.н., в.н.с.
121552, Москва, ул. ак. Е.И. Чазова, д. 15А
ResearcherID O-2949-2015; Scopus Author ID 57204688438
Конфликт интересов:
Нет
Е. В. Парфёнова
Россия
Парфёнова Елена Викторовна - д.м.н., профессор, академик РАН.
121552, Москва, ул. ак. Е.И. Чазова, д. 15А
Researcher ID B-9307-2014; Scopus Author ID 57190312316
Конфликт интересов:
Нет
Список литературы
1. Zhang H, Zhou XD, Shapiro MD, et al. Global burden of metabolic diseases, 1990–2021. Metabolism. 2024;160:155999. doi: https://doi.org/10.1016/j.metabol.2024.155999
2. Horwitz A, Birk R. Adipose Tissue Hyperplasia and Hypertrophy in Common and Syndromic Obesity-The Case of BBS Obesity. Nutrients. 2023;15(15):3445. doi: https://doi.org/10.3390/nu15153445
3. Stafeev I, Podkuychenko N, Michurina S, et al. Low proliferative potential of adipose-derived stromal cells associates with hypertrophy and inflammation in subcutaneous and omental adipose tissue of patients with type 2 diabetes mellitus. J Diabetes Complications. 2019;33(2):148–159. doi: https://doi.org/10.1016/j.jdiacomp.2018.10.011
4. Andersen E, Ingerslev LR, Fabre O, et al. Preadipocytes from obese humans with type 2 diabetes are epigenetically reprogrammed at genes controlling adipose tissue function. Int J Obes (Lond). 2019;43(2):306–318. doi: https://doi.org/10.1038/s41366-018-0031-3
5. Zammouri J, Vatier C, Capel E, et al. Molecular and Cellular Bases of Lipodystrophy Syndromes. Front Endocrinol (Lausanne). 2022;12:803189. doi: https://doi.org/10.3389/fendo.2021.803189
6. DeMarsilis A, Reddy N, Boutari C, et al. Pharmacotherapy of type 2 diabetes: An update and future directions. Metabolism. 2022;137:155332. doi: https://doi.org/10.1016/j.metabol.2022.155332
7. Araújo-Vilar D, Santini F. Diagnosis and treatment of lipodystrophy: a step-by-step approach. J Endocrinol Invest. 2019;42(1):61–73. doi: https://doi.org/10.1007/s40618-018-0887-z
8. Sterodimas A, de Faria J, Nicaretta B, Pitanguy I. Tissue engineering with adipose-derived stem cells (ADSCs): current and future applications. J Plast Reconstr Aesthet Surg. 2010;63(11):1886–1892. doi: https://doi.org/10.1016/j.bjps.2009.10.028
9. Scherberich A, Galli R, Jaquiery C, Farhadi J, Martin I. Three-dimensional perfusion culture of human adipose tissue-derived endothelial and osteoblastic progenitors generates osteogenic constructs with intrinsic vascularization capacity. Stem Cells. 2007;25(7):1823–1829. doi: https://doi.org/10.1634/stemcells.2007-0124
10. Ni R, Luo C, Ci H, et al. Construction of vascularized tissue-engineered breast with dual angiogenic and adipogenic micro-tissues. Mater Today Bio. 2022;18:100539. doi: https://doi.org/10.1016/j.mtbio.2022.100539
11. Curtis TM, Hannett JM, Harman RM, et al. The secretome of adipose-derived mesenchymal stem cells protects SH-SY5Y cells from arsenic-induced toxicity, independent of a neuron-like differentiation mechanism. Neurotoxicology. 2018;67:54–64. doi: https://doi.org/10.1016/j.neuro.2018.04.009
12. Zhao H, Shang Q, Pan Z, et al. Exosomes From Adipose-Derived Stem Cells Attenuate Adipose Inflammation and Obesity Through Polarizing M2 Macrophages and Beiging in White Adipose Tissue. Diabetes. 2018;67(2):235–247. doi: https://doi.org/10.2337/db17-0356
13. Später T, Menger MM, Nickels RM, et al. Macrophages promote network formation and maturation of transplanted adipose tissue-derived microvascular fragments. J Tissue Eng. 2020;11:2041731420911816. doi: https://doi.org/10.1177/2041731420911816
14. Gupta S, Sarangi PP. Inflammation driven metabolic regulation and adaptation in macrophages. Clin Immunol. 2023;246:109216. doi: https://doi.org/10.1016/j.clim.2022.109216
15. Ejaz A, Hatzmann FM, Hammerle S, et al. Fibroblast feeder layer supports adipogenic differentiation of human adipose stromal/progenitor cells. Adipocyte. 2019;8(1):178–189. doi: https://doi.org/10.1080/21623945.2019.1608751
16. Flynn L, Prestwich GD, Semple JL, Woodhouse KA. Adipose tissue engineering with naturally derived scaffolds and adipose-derived stem cells. Biomaterials. 2007;28(26):3834-3842. doi: https://doi.org/10.1016/j.biomaterials.2007.05.002
17. Oliva J, Florentino A, Bardag-Gorce F, Niihara Y. Engineering, differentiation and harvesting of human adipose-derived stem cell multilayer cell sheets. Regen Med. 2019;14(3):151–163. doi: https://doi.org/10.2217/rme-2018-0053
18. Albrecht FB, Schmidt FF, Volz AC, Kluger PJ. Bioprinting of 3D Adipose Tissue Models Using a GelMA-Bioink with Human Mature Adipocytes or Human Adipose-Derived Stem Cells. Gels. 2022;8(10):611. doi: https://doi.org/10.3390/gels8100611
19. Jeong GJ, Im GB, Lee TJ, et al. Development of a stem cell spheroid-laden patch with high retention at skin wound site. Bioeng Transl Med. 2021;7(2):e10279. doi: https://doi.org/10.1002/btm2.10279
20. Glass GE, Ferretti P. Adipose-Derived Stem Cells in Aesthetic Surgery. Aesthet Surg J. 2019;39(4):423–438. doi: https://doi.org/10.1093/asj/sjy160
21. Boldyreva MA, Shevchenko EK, Molokotina YD, et al. Transplantation of Adipose Stromal Cell Sheet Producing Hepatocyte Growth Factor Induces Pleiotropic Effect in Ischemic Skeletal Muscle. Int J Mol Sci. 2019;20(12):3088. doi: https://doi.org/10.3390/ijms20123088
22. Boldyreva MА, Bondar IV, Stafeev IS, et al. Plasmid-based gene therapy with hepatocyte growth factor stimulates peripheral nerve regeneration after traumatic injury. Biomed Pharmacother. 2018;101:682–690. doi: https://doi.org/10.1016/j.biopha.2018.02.138
23. Truong VA, Lin YH, Nguyen NTK, et al. Bi-directional gene activation and repression promote ASC differentiation and enhance bone healing in osteoporotic rats. Mol Ther. 2022;30(1):92–104. doi: https://doi.org/10.1016/j.ymthe.2021.08.024
24. Dergilev KV, Shevchenko EK, Tsokolaeva ZI, et al. Cell Sheet Comprised of Mesenchymal Stromal Cells Overexpressing Stem Cell Factor Promotes Epicardium Activation and Heart Function Improvement in a Rat Model of Myocardium Infarction. Int J Mol Sci. 2020;21(24):9603. doi: https://doi.org/10.3390/ijms21249603
25. Tajali R, Eidi A, Tafti HA, et al. Transplantation of adipose derived stem cells in diabetes mellitus; limitations and achievements. J Diabetes Metab Disord. 2023;22(2):1039–1052. doi: https://doi.org/10.1007/s40200-023-01280-8
26. Chen X, Yan L, Guo Z, et al. Adipose-derived mesenchymal stem cells promote the survival of fat grafts via crosstalk between the Nrf2 and TLR4 pathways. Cell Death Dis. 2016;7(9):e2369. doi: https://doi.org/10.1038/cddis.2016.261
27. Ishida M, Tatsumi K, Okumoto K, Kaji H. Adipose Tissue-Derived Stem Cell Sheet Improves Glucose Metabolism in Obese Mice. Stem Cells Dev. 2020;29(8):488–497. doi: https://doi.org/10.1089/scd.2019.0250
28. Suematsu Y, Nagano H, Kiyosawa T, Takeoka S, Fujie T. Angiogenic efficacy of ASC spheroids filtrated on porous nanosheets for the treatment of a diabetic skin ulcer. J Biomed Mater Res B Appl Biomater. 2022;110(6):1245-1254. doi: https://doi.org/10.1002/jbm.b.34995
29. Tu CC, Cheng NC, Yu J, et al. Adipose-derived stem cell spheroid-laden microbial transglutaminase cross-linked gelatin hydrogel for treating diabetic periodontal wounds and craniofacial defects. Stem Cell Res Ther. 2023;14(1):20. doi: https://doi.org/10.1186/s13287-023-03238-2
30. Ashwell M, Meade CJ, Medawar P, Sowter C. Adipose tissue: contributions of nature and nurture to the obesity of an obese mutant mouse (ob/ob). Proc R Soc Lond B Biol Sci. 1977;195(1120):343–353. doi: https://doi.org/10.1098/rspb.1977.0014
31. Shibasaki M, Takahashi K, Itou T, et al. Alterations of insulin sensitivity by the implantation of 3T3-L1 cells in nude mice. A role for TNF-alpha? Diabetologia. 2002;45(4):518–526. doi: https://doi.org/10.1007/s00125-002-0786-9
32. Gavrilova O, Marcus-Samuels B, Graham D, et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest. 2000;105(3):271–278. doi: https://doi.org/10.1172/JCI7901
33. Kim JK, Gavrilova O, Chen Y, Reitman ML, Shulman GI. Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J Biol Chem. 2000;275(12):8456–8460. doi: https://doi.org/10.1074/jbc.275.12.8456
34. Colombo C, Cutson JJ, Yamauchi T, et al. Transplantation of adipose tissue lacking leptin is unable to reverse the metabolic abnormalities associated with lipoatrophy. Diabetes. 2002;51(9):2727–2733. doi: https://doi.org/10.2337/diabetes.51.9.2727
35. Bosetti M, Borrone A, Follenzi A, Messaggio F, Tremolada C, Cannas M. Human Lipoaspirate as Autologous Injectable Active Scaffold for One-Step Repair of Cartilage Defects. Cell Transplant. 2016;25(6):1043–1056. doi: https://doi.org/10.3727/096368915X689514
36. Young DA, Ibrahim DO, Hu D, Christman KL. Injectable hydrogel scaffold from decellularized human lipoaspirate. Acta Biomater. 2011;7(3):1040–1049. doi: https://doi.org/10.1016/j.actbio.2010.09.035
37. He Y, Zhang Z, Li Z, et al. Three-dimensional spheroid formation of adipose-derived stem cells improves the survival of fat transplantation by enhance their therapeutic effect. Biotechnol J. 2023;18(10):e2300021. doi: https://doi.org/10.1002/biot.202300021
38. Xia Z, Guo X, Yu N, et al. The Application of Decellularized Adipose Tissue Promotes Wound Healing. Tissue Eng Regen Med. 2020;17(6):863-874. doi: https://doi.org/10.1007/s13770-020-00286-0
39. Lui YF, Ip WY. Application of Hydrogel in Reconstruction Surgery: Hydrogel/Fat Graft Complex Filler for Volume Reconstruction in Critical Sized Muscle Defects. Biomed Res Int. 2016;2016:3459431. doi: https://doi.org/10.1155/2016/3459431
40. Jagtap U, Paul A. UCP1 activation: Hottest target in the thermogenesis pathway to treat obesity using molecules of synthetic and natural origin. Drug Discov Today. 2023;28(9):103717. doi: https://doi.org/10.1016/j.drudis.2023.103717
41. Ikeda K, Kang Q, Yoneshiro T, et al. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med. 2017;23(12):1454–1465. doi: https://doi.org/10.1038/nm.4429
42. Sharma AK, Khandelwal R, Wolfrum C. Futile cycles: Emerging utility from apparent futility. Cell Metab. 2024;36(6):1184–1203. doi: https://doi.org/10.1016/j.cmet.2024.03.008
43. Shan T, Liang X, Bi P, et al. Distinct populations of adipogenic and myogenic Myf5-lineage progenitors in white adipose tissues. J Lipid Res. 2013;54(8):2214–2224. doi: https://doi.org/10.1194/jlr.M038711
44. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19(10):1252–1263. doi: https://doi.org/10.1038/nm.3361
45. Cohen P, Spiegelman BM. Brown and Beige Fat: Molecular Parts of a Thermogenic Machine. Diabetes. 2015;64(7):2346–2351. doi: https://doi.org/10.2337/db15-0318
46. Tharp KM, Stahl A. Bioengineering Beige Adipose Tissue Therapeutics. Front Endocrinol (Lausanne). 2015;6:164. doi: https://doi.org/10.3389/fendo.2015.00164
47. Reinisch I, Ghosh A, Noé F, et al. Unveiling adipose populations linked to metabolic health in obesity. Cell Metab. 2025;37(3):640–655.e4. doi: https://doi.org/10.1016/j.cmet.2024.11.006
48. Park JY, Ha ES, Lee J, et al. The brown fat-specific overexpression of RBP4 improves thermoregulation and systemic metabolism by activating the canonical adrenergic signaling pathway. Exp Mol Med. 2025;(57):554–566. doi: https://doi.org/10.1038/s12276-025-01411-6
49. Hu F, Wang M, Xiao T, et al. miR-30 promotes thermogenesis and the development of beige fat by targeting RIP140. Diabetes. 2015;64(6):2056–2068. doi: https://doi.org/10.2337/db14-1117
50. Tsagkaraki E, Nicoloro SM, DeSouza T, et al. CRISPR-enhanced human adipocyte browning as cell therapy for metabolic disease. Nat Commun. 2021;12(1):6931. doi: https://doi.org/10.1038/s41467-021-27190-y
51. Michurina S, Stafeev I, Boldyreva M, et al. Transplantation of Adipose-Tissue-Engineered Constructs with CRISPR-Mediated UCP1 Activation. Int J Mol Sci. 2023;24(4):3844. doi: https://doi.org/10.3390/ijms24043844
52. Wang CH, Lundh M, Fu A, et al. CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Sci Transl Med. 2020;12(558):eaaz8664. doi: https://doi.org/10.1126/scitranslmed.aaz8664
53. Dewal RS, Yang FT, Baer LA, et al. Transplantation of committed pre-adipocytes from brown adipose tissue improves whole-body glucose homeostasis. iScience. 2024;27(2):108927. doi: https://doi.org/10.1016/j.isci.2024.108927
54. Quan Y, Li J, Cai J, Liao Y, Zhang Y, Lu F. Transplantation of beige adipose organoids fabricated using adipose acellular matrix hydrogel improves metabolic dysfunction in high-fat diet-induced obesity and type 2 diabetes mice. J Cell Physiol. 2024;239(4):e31191. doi: https://doi.org/10.1002/jcp.31191
55. Tharp KM, Jha AK, Kraiczy J, et al. Matrix-Assisted Transplantation of Functional Beige Adipose Tissue. Diabetes. 2015;64(11):3713–3724. doi: https://doi.org/10.2337/db15-0728
56. Hao L, Nie YH, Chen CY, Li XY, Kaliannan K, Kang JX. Omega-3 Polyunsaturated Fatty Acids Protect against High-Fat Diet-Induced Morphological and Functional Impairments of Brown Fat in Transgenic Fat-1 Mice. Int J Mol Sci. 2022;23(19):11903. doi: https://doi.org/10.3390/ijms231911903
57. Yi Y, Hu W, Zhao C, et al. Deciphering the Emerging Roles of Adipocytes and Adipose-Derived Stem Cells in Fat Transplantation. Cell Transplant. 2021;30:963689721997799. doi: https://doi.org/10.1177/0963689721997799
58. Moreno-Navarrete JM, Fernandez-Real JM. The gut microbiota modulates both browning of white adipose tissue and the activity of brown adipose tissue. Rev Endocr Metab Disord. 2019;20(4):387–397. doi: https://doi.org/10.1007/s11154-019-09523-x
Дополнительные файлы
Рецензия
Для цитирования:
Стафеев Ю.С., Парфёнова Е.В. Клеточная терапия метаболических заболеваний с использованием графтов адипоцитарного происхождения: экспериментальные подходы и клинические перспективы. Сахарный диабет. 2025;28(6):578-586. https://doi.org/10.14341/DM13331
For citation:
Stafeev I.S., Parfyonova Y.V. Cell-based therapy of metabolic diseases by adipose-derived grafts: experimental approaches and clinical perspectives. Diabetes mellitus. 2025;28(6):578-586. (In Russ.) https://doi.org/10.14341/DM13331
JATS XML
Контент доступен под лицензией Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).









































