Transcriptional features of autoimmune diabetes: differentially expressed genes in CD4+ and CD8+ subpopulations of blood T cells
https://doi.org/10.14341/DM13316
Abstract
BACKGROUND: Latent autoimmune diabetes in adults (LADA) is considered an intermediate form between type 1 (T1DM) and type 2 diabetes mellitus (T2DM). However, the molecular mechanisms underlying its unique clinical and pathogenetic features remain insufficiently studied. Identifying differentially expressed genes (DEGs) in LADA compared to T1DM is essential for developing more personalized diagnostic and therapeutic approaches.
OBJECTIVE: To identify DEGs in peripheral blood mononuclear cells (PBMCs) of patients with LADA compared to those with T1DM, and to evaluate differences in DEGs between these patient groups and healthy volunteers.
MATERIALS AND METHODS: The study included 60 participants (23 T1DM patients with disease duration of up to 1 year, 15 LADA patients with disease duration of up to 5 years, and 22 healthy volunteers). The median age of LADA patients was 40 [34; 45] years, and for T1DM patients, 26 [21; 31] years. This was a single-center, cross-sectional observational study. PBMCs were isolated from all participants, and single-cell RNA sequencing (scRNA-seq) was performed. Differential gene expression analysis was conducted using a pseudo-bulk approach (pyDEseq2, p<0.05 adjusted for multiple comparisons, |log2FoldChange| ≥0.5). Statistical analyses employed nonparametric tests (Kruskal–Wallis, Mann–Whitney).
RESULTS: In LADA patients, reduced expression of HLA-G, SPARC, and C20orf204 and increased expression of AC002460.2 were observed compared to healthy volunteers (p<0.05) in CD4+ Naive T-cells. In the T1DM group, the most significant differences were identified in CD4+ Central memory T-cells (IFIT1, CASP3, LAMP3, HIST1H2BN). When comparing LADA to T1DM, only one transcript, C20orf204, showed statistically significant differential expression (p<0.05) in CD4+ Naive T-cells.
CONCLUSION: The findings indicate that LADA and T1DM share similar molecular patterns, with LADA exhibiting moderate changes in the expression of genes associated with immune regulation and inflammation. The minimal differences between these forms of diabetes highlight their pathogenetic similarity.
About the Authors
I. I. GolodnikovRussian Federation
Ivan I. Golodnikov, PhD student
11 Dm. Ulyanova street, 117036 Moscow
ResearcherID: AAJ-8843-2021;
Scopus Author ID: 57208628509
E. S. Podshivalova
Russian Federation
Elizaveta S. Podshivalova
Moscow
ResearcherID: ISB-5640-2023;
Scopus Author ID: 57214441739
V. I. Chechekhin
Russian Federation
Vadim I. Chechekhin, MD, PhD
Moscow
ResearcherID: AAN-6190-2020
A. V. Zubritsky
Russian Federation
Anatoliy A. Zubritskiy
Moscow
Scopus Author ID: 57202420882
A. A. Matrosova
Russian Federation
Alina A. Matrosova
Moscow
Y. V. Dvoryanchikov
Russian Federation
Yaroslav V. Dvoryanchikov
Moscow
M. D. Samsonova
Russian Federation
Margarita D. Samsonova
Moscow
E. K. Markelova
Russian Federation
Ekaterina K. Markelova
Moscow
Y. A. Medvedeva
Russian Federation
Yulia A. Medvedeva, PhD in Biology
Moscow
T. V. Nikonova
Russian Federation
Tatiana V. Nikonova, MD, PhD
Moscow
E. V. Bondarenko
Russian Federation
Ekaterina V. Bondarenko, PhD
Moscow
S. V. Popov
Russian Federation
Sergey V. Popov, PhD in Biology
Moscow
I. R. Minniakhmetov
Russian Federation
Ildar R. Minniakhmetov, PhD in Biology
Moscow
M. V. Shestakova
Russian Federation
Marina V. Shestakova, MD, PhD, Professor
Moscow
ResearcherID: D-9123-2012;
Scopus Author ID: 7004195530
References
1. Ravikumar V, Ahmed A, Anjankar A. A Review on Latent Autoimmune Diabetes in Adults. Cureus. 2023;15(10):e47915. doi: https://doi.org/10.7759/cureus.47915
2. Smirnova OM, Kononenko IV, Dedov II. Geterogennost’ sakharnogo diabeta. Autoimmunnyy latentnyy sakharnyy diabet u vzroslykh (LADA): opredelenie, rasprostranennost’, klinicheskie osobennosti, diagnostika, printsipy lecheniya. Diabetes mellitus. 2008;11(4):18-23. (In Russ.) doi: https://doi.org/10.14341/2072-0351-5583
3. Mussa BM, Venkatachalam T, Srivastava A, et al. Identification of novel differentially expressed genes in type 1 diabetes mellitus complications using transcriptomic profiling of UAE patients: a multicenter study. Sci Rep. 2022;12(1):16316. doi: https://doi.org/10.1038/s41598-022-18997-w
4. Adewumi OO, Taiwo IA, Oladele EO. In-silico identification of differentially expressed genes in type 1 diabetes mellitus. Biokemistri, 2021;33(3):215-226
5. Release Notes for Cell Ranger. v7.1.0 Release Notes. 2022. 10X Genomics. [доступ от 20.01.2025]. Доступ по ссылке https://www.10xgenomics.com/support/software/cell-ranger/latest/release-notes/cr-release-notes
6. Young MD, Behjati S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience. 2020;9(12):giaa151. doi: https://doi.org/10.1093/gigascience/giaa151
7. Germain PL, Lun A, Garcia Meixide C, et al. Doublet identification in single-cell sequencing data using scDblFinder. F1000Res. 2021;10:979. doi: https://doi.org/10.12688/f1000research.73600.2
8. Hu C, Li T, Xu Y, et al. CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res. 2023;51(D1):D870-D876. doi: https://doi.org/10.1093/nar/gkac947
9. Franzén O, Gan LM, Björkegren JLM. PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database (Oxford). 2019;2019:baz046. doi: https://doi.org/10.1093/database/baz046
10. Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr Protoc Bioinforma. 2016;54(1). doi: https://doi.org/10.1002/cpbi.5
11. Chechekhina E, Tkachuk V, Chechekhin V. scParadise: Tunable highly accurate multi-task cell type annotation and surface protein abundance prediction. bioRxiv. 2024:1-18. doi: https://doi.org/10.1101/2024.09.23.614509
12. Butler A, et al. Azimuth: A shiny app demonstrating a query-reference mapping algorithm for single-cell data. 2021. Github. [доступ от 20.01.2025]. Доступ по ссылке: https://github.com/satijalab/azimuth
13. Tatti P, Pavandeep S. Gender Difference in Type 1 Diabetes: An Underevaluated Dimension of the Disease. Diabetology. 2022; 3(2):364-368. doi: https://doi.org/10.3390/diabetology3020027
14. Carosella ED, Favier B, Rouas-Freiss N, Moreau P, Lemaoult J. Beyond the increasing complexity of the immunomodulatory HLA-G molecule. Blood. 2008;111(10):4862-4870. doi: https://doi.org/10.1182/blood-2007-12-127662
15. Alegre E, Díaz-Lagares A, Lemaoult J, et al. Maternal antigen presenting cells are a source of plasmatic HLA-G during pregnancy: longitudinal study during pregnancy. Hum Immunol. 2007;68(8):661-667. doi: https://doi.org/10.1016/j.humimm.2007.04.007
16. Ham SM, Song MJ, Yoon HS, et al. SPARC Is Highly Expressed in Young Skin and Promotes Extracellular Matrix Integrity in Fibroblasts via the TGF-β Signaling Pathway. Int J Mol Sci. 2023;24(15):12179. doi: https://doi.org/10.3390/ijms241512179
17. Jandeleit-Dahm K, Rumble J, Cox AJ, et al. SPARC gene expression is increased in diabetes-related mesenteric vascular hypertrophy. Microvasc Res. 2000;59(1):61-71. doi: https://doi.org/10.1006/mvre.1999.2189
18. Xu L, Ping F, Yin J, et al. Elevated plasma SPARC levels are associated with insulin resistance, dyslipidemia, and inflammation in gestational diabetes mellitus. PLoS One. 2013;8(12):e81615. doi: https://doi.org/10.1371/journal.pone.0081615
19. Burbano De Lara S, Tran DDH, Allister AB, et al. C20orf204, a hepatocellular carcinoma-specific protein interacts with nucleolin and promotes cell proliferation. Oncogenesis 2021;10(3):31. doi: https://doi.org/10.1038/s41389-021-00320-3
20. Atianand MK, Caffrey DR, Fitzgerald KA. Immunobiology of Long Noncoding RNAs. Annu Rev Immunol. 2017;35:177-198. doi: https://doi.org/10.1146/annurev-immunol-041015-055459
21. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381-395. doi: https://doi.org/10.1038/cr.2011.22
22. NCBI AceView. Homo sapiens gene HIST1H2BN, encoding histone cluster 1, H2bn. [доступ от: 21.01.2025]; Доступно по ссылке: https://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/av.cgi?db=human&c=Gene&l=HIST1H2BN.
23. Tang YL, Dong XY, Zeng ZG, Feng Z. Gene expression-based analysis identified NTNG1 and HGF as biomarkers for diabetic kidney disease. Medicine (Baltimore). 2020;99(1):e18596. doi: https://doi.org/10.1097/MD.0000000000018596
24. Pidugu VK, Pidugu HB, Wu MM, et al. Emerging Functions of Human IFIT Proteins in Cancer. Front Mol Biosci. 2019;6:148. doi: https://doi.org/10.3389/fmolb.2019.00148
25. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14(1):36-49. doi: https://doi.org/10.1038/nri3581
26. Marro BS, Ware BC, Zak J, et al. Progression of type 1 diabetes from the prediabetic stage is controlled by interferon-α signaling. Proc Natl Acad Sci U S A. 2017;114(14):3708-3713. doi: https://doi.org/10.1073/pnas.1700878114
27. Wang Z, Ji X, Zhang Y, et al. Interactions between LAMP3+ dendritic cells and T-cell subpopulations promote immune evasion in papillary thyroid carcinoma. J Immunother Cancer. 2024;12(5):e008983. doi: https://doi.org/10.1136/jitc-2024-008983
28. Wang Z, Wang X, Jin R, et al. LAMP3 expression in the liver is involved in T cell activation and adaptive immune regulation in hepatitis B virus infection. Front Immunol. 2023;14:1127572. doi: https://doi.org/10.3389/fimmu.2023.1127572
29. De Carvalho Bittencourt M, Herren S, Graber P, et al. Extracellular lysosome-associated membrane protein-1 (LAMP-1) mediates autoimmune disease progression in the NOD model of type 1 diabetes. Eur J Immunol. 2005;35(5):1501-1509. doi: https://doi.org/10.1002/eji.200425851
30. Liadis N, Murakami K, Eweida M, et al. Caspase-3-dependent beta-cell apoptosis in the initiation of autoimmune diabetes mellitus. Mol Cell Biol. 2005;25(9):3620-3629. doi: https://doi.org/10.1128/MCB.25.9.3620-3629.2005
31. Sumida H, Cyster JG. G-Protein Coupled Receptor 18 Contributes to Establishment of the CD8 Effector T Cell Compartment. Front Immunol. 2018;9:660. doi: https://doi.org/10.3389/fimmu.2018.00660
32. Mao XF, Chen XP, Jin YB, et al. The variations of TRBV genes usages in the peripheral blood of a healthy population are associated with their evolution and single nucleotide polymorphisms. Hum Immunol. 2019;80(3):195-203. doi: https://doi.org/10.1016/j.humimm.2018.12.007
33. Willcox A, Richardson SJ, Bone AJ, et al. Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol. 2009;155(2):173-181. doi: https://doi.org/10.1111/j.1365-2249.2008.03860.x
Supplementary files
|
1. Рисунок 1. Дифференциальная экспрессия генов при сравнении латентного аутоиммунного диабета взрослых и здоровых добровольцев. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(909KB)
|
Indexing metadata ▾ |
|
2. Рисунок 2. Дифференциальная экспрессия генов при сравнении пациентов с сахарным диабетом 1 типа и здоровых добровольцев. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(1009KB)
|
Indexing metadata ▾ |
|
3. Рисунок 3. Дифференциальная экспрессия генов при сравнении латентного аутоиммунного диабета взрослых и сахарного диабета 1 типа. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(928KB)
|
Indexing metadata ▾ |
Review
For citations:
Golodnikov I.I., Podshivalova E.S., Chechekhin V.I., Zubritsky A.V., Matrosova A.A., Dvoryanchikov Y.V., Samsonova M.D., Markelova E.K., Medvedeva Y.A., Nikonova T.V., Bondarenko E.V., Popov S.V., Minniakhmetov I.R., Shestakova M.V. Transcriptional features of autoimmune diabetes: differentially expressed genes in CD4+ and CD8+ subpopulations of blood T cells. Diabetes mellitus. 2025;28(2):124-135. (In Russ.) https://doi.org/10.14341/DM13316

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).