Factors for diabetic retinopathy progression and macular edema development after pancreas transplantation
https://doi.org/10.14341/DM13306
Abstract
The effect of pancreatic transplantation on the condition of target organs in diabetes mellitus (DM) is an area that requires further study. In this literature review, studies reflecting the ophthalmological status of patients before and after pancreatic transplantation were analyzed, as well as an assessment of potential risk factors associated with the progression of diabetic retinopathy and the development of diabetic macular edema in the post-transplant period. Based on the results of the studies studied, the following predictors of the progression of diabetic fundus damage after pancreatic transplantation were identified: early age at the time of DM manifestation, absence or presence of a non-proliferative stage of diabetic retinopathy before surgical treatment of DM, panretinal laser coagulation for 1 year before transplantation, isolated pancreatic transplantation as a method of choice of transplantation, high baseline and postoperative levels of glycated hemoglobin (before transplantation — ≥9.0±2.3%, after surgery — ≥6.0±0.6%), as well as its marked decrease after surgical treatment of diabetes, arterial hypotension in the first 3 months after transplantation, arterial hypertension in the late post-transplant period. Knowledge of these risk factors can help an ophthalmologist in predicting the course of diabetic fundus changes, carrying out prevention, as well as in providing timely qualified assistance in case of deterioration of the ophthalmological status of pancreatic transplant recipients.
About the Authors
G. S. ArzhimatovaRussian Federation
Gulzhiyana S. Arzhimatova - PhD.
Moscow
Competing Interests:
None
E. V. Bulava
Russian Federation
Evgeniy V. Bulava - PhD, assistant.
2/1, building 1 Barrikadnaya street, 123242 Moscow
Competing Interests:
None
M. V. Gusakov
Russian Federation
Mikhail V. Gusakov - clinical resident.
Moscow
Competing Interests:
None
I. V. Dmitriev
Russian Federation
Ilya V. Dmitriev - PhD, Associate Professor.
Moscow
Competing Interests:
None
References
1. Magliano DJ, Boyko EJ. IDF Diabetes Atlas 10th edition scientific committee. IDF DIABETES ATLAS. Brussels: International Diabetes Federation; 2021. URL: https://www.ncbi.nlm.nih.gov/books/NBK581934/
2. D’Souza D, Empringham J, Pechlivanoglou P, Uleryk EM, Cohen E, Shulman R. Incidence of Diabetes in Children and Adolescents During the COVID-19 Pandemic: A Systematic Review and Meta-Analysis. JAMA Netw Open. 2023;6(6):e2321281. doi: https://doi.org/10.1001/jamanetworkopen.2023.21281
3. Rahmati M, Keshvari M, Mirnasuri S, et al. The global impact of COVID-19 pandemic on the incidence of pediatric new-onset type 1 diabetes and ketoacidosis: A systematic review and meta-analysis. J Med Virol. 2022;94(11):5112-5127. doi: https://doi.org/10.1002/jmv.27996
4. Foster NC, Beck RW, Miller KM, et al. State of Type 1 Diabetes Management and Outcomes from the T1D Exchange in 2016-2018 [published correction appears in Diabetes Technol Ther. 2019;21(4):230. doi: https://doi.org/10.1089/dia.2018.0384.correx.]. Diabetes Technol Ther. 2019;21(2):66-72. doi: https://doi.org/10.1089/dia.2018.0384
5. Akyirem S, Ekpor E, Namumbejja Abwoye D, Batten J, Nelson LE. Type 2 diabetes stigma and its association with clinical, psychological, and behavioral outcomes: A systematic review and meta-analysis. Diabetes Res Clin Pract. 2023;202:110774. doi: https://doi.org/10.1016/j.diabres.2023.110774
6. Heald A, Stedman M, Robinson A, et al. Mortality Rate Associated with Diabetes: Outcomes From a General Practice Level Analysis in England Using the Royal College of General Practitioners (RCGP) Database Indicate Stability Over a 15 Year Period. Diabetes Ther. 2022;13(3):505-516. doi: https://doi.org/10.1007/s13300-022-01215-1
7. Jiang AT, BHSc, Rowe N, Sener A, Luke P. Simultaneous pancreaskidney transplantation: The role in the treatment of type 1 diabetes and end-stage renal disease. Can Urol Assoc J. 2014;8(3-4):135-138. doi: https://doi.org/10.5489/cuaj.1597
8. Parajuli S, Arunachalam A, Swanson KJ, et al. Outcomes after simultaneous kidney-pancreas versus pancreas after kidney transplantation in the current era. Clin Transplant. 2019;33(12):e13732. doi: https://doi.org/10.1111/ctr.13732
9. Maupoey Ibáñez J, Boscà Robledo A, López-Andujar R. Late complications of pancreas transplant. World J Transplant. 2020;10(12):404-414. doi: https://doi.org/10.5500/wjt.v10.i12.404
10. Kervella D, Mesnard B, Prudhomme T, et al. Sterile Pancreas Inflammation during Preservation and after Transplantation. Int J Mol Sci. 2023;24(5):4636. doi: https://doi.org/10.3390/ijms24054636
11. Petersen MR, Vine AK. Progression of diabetic retinopathy after pancreas transplantation. The University of Michigan Pancreas Transplant Evaluation Committee. Ophthalmology. 1990;97(4):496-502. doi: https://doi.org/10.1016/s0161-6420(90)32556-3
12. Aref A, Zayan T, Pararajasingam R, Sharma A, Halawa A. Pancreatic transplantation: Brief review of the current evidence. World J Transplant. 2019;9(4):81-93. doi: https://doi.org/10.5500/wjt.v9.i4.81
13. Chan CM, Chim TM, Leung KC, Tong CH, Wong TF, Leung GK. Simultaneous pancreas and kidney transplantation as the standard surgical treatment for diabetes mellitus patients with end-stage renal disease. Hong Kong Med J. 2016;22(1):62-69. doi: https://doi.org/10.12809/hkmj154613
14. Lombardo C, Perrone VG, Amorese G, et al. Update on pancreatic transplantation on the management of diabetes. Minerva Med. 2017;108(5):405-418. doi: https://doi.org/10.23736/S0026-4806.17.05224-7
15. Nixon DR, Flinn N. Visual Function for Driving in Diabetic Macular Edema and Retinal Vein Occlusion Post-Stabilization with Anti-Vascular Endothelial Growth Factor. Clin Ophthalmol. 2021;15:1659-1666. doi: https://doi.org/10.2147/OPTH.S304229
16. Shrestha GS, Kaiti R. Visual functions and disability in diabetic retinopathy patients. J Optom. 2014;7(1):37-43. doi: https://doi.org/10.1016/j.optom.2013.03.003
17. Yang Z, Tan TE, Shao Y, Wong TY, Li X. Classification of diabetic retinopathy: Past, present and future. Front Endocrinol (Lausanne). 2022;13:1079217. doi: https://doi.org/10.3389/fendo.2022.1079217
18. Vorobyeva IV, Moshetova LK, Pinchuk AV, et al. Diabetic Retinopathy. Morphofunctional State of the Retina in Pancreas Recipients. Ophthalmology in Russia. 2021;18(3):459-469. (In Russ.). doi: https://doi.org/10.18008/1816-5095-2021-3-459-469
19. Lois N, Cook JA, Wang A, et al. Evaluation of a New Model of Care for People with Complications of Diabetic Retinopathy: The EMERALD Study. Ophthalmology. 2021;128(4):561-573. doi: https://doi.org/10.1016/j.ophtha.2020.10.030
20. Solomon SD, Goldberg MF. ETDRS Grading of Diabetic Retinopathy: Still the Gold Standard?. Ophthalmic Res. 2019;62(4):190-195. doi: https://doi.org/10.1159/000501372
21. Kim YJ, Shin S, Han DJ, et al. Long-term Effects of Pancreas Transplantation on Diabetic Retinopathy and Incidence and Predictive Risk Factors for Early Worsening. Transplantation. 2018;102(1):e30-e38. doi: https://doi.org/10.1097/TP.0000000000001958
22. Voglová B, Hladíková Z, Nemétová L, et al. Early worsening of diabetic retinopathy after simultaneous pancreas and kidney transplantation-Myth or reality?. Am J Transplant. 2020;20(10):2832-2841. doi: https://doi.org/10.1111/ajt.15924
23. Giannarelli R, Coppelli A, Sartini M, et al. Effects of pancreas-kidney transplantation on diabetic retinopathy. Transpl Int. 2005;18(5):619-622. doi: https://doi.org/10.1111/j.1432-2277.2005.00108.x
24. Chow VC, Pai RP, Chapman JR, et al. Diabetic retinopathy after combined kidney-pancreas transplantation. Clin Transplant. 1999;13(4):356-362. doi: https://doi.org/10.1034/j.1399-0012.1999.130413.x
25. Wang Q, Klein R, Moss SE, et al. The influence of combined kidney-pancreas transplantation on the progression of diabetic retinopathy. A case series. Ophthalmology. 1994;101(6):1071-1076. doi: https://doi.org/10.1016/s0161-6420(94)31216-4
26. Gruessner AC, Gruessner RWG. The 2022 International Pancreas Transplant Registry Report-A Review. Transplant Proc. 2022;54(7):1918-1943. doi: https://doi.org/10.1016/j.transproceed.2022.03.059
27. Stites E, Wiseman AC. Live donor kidney - PAK versus SPK: how to decide?. Curr Opin Organ Transplant. 2017;22(4):377-381. doi: https://doi.org/10.1097/MOT.0000000000000435
28. Tsai FY, Lau LI, Li AF, et al. Acute macular edema and peripapillary soft exudate after pancreas transplantation with accelerated progression of diabetic retinopathy. J Chin Med Assoc. 2017;80(5):319-325. doi: https://doi.org/10.1016/j.jcma.2017.01.004
29. Ramakrishnan S, Anand V, Roy S. Vascular endothelial growth factor signaling in hypoxia and inflammation. J Neuroimmune Pharmacol. 2014;9(2):142-160. doi: https://doi.org/10.1007/s11481-014-9531-7
30. Pandya M, Banait S, Daigavane S. Insights Into Visual Rehabilitation: Pan-Retinal Photocoagulation for Proliferative Diabetic Retinopathy. Cureus. 2024;16(2):e54273. doi: https://doi.org/10.7759/cureus.54273
31. Petrachkov DV, Filippov VM. Influence of Intraoperative Retinal Laser Photocoagulation Area and Localisation on the Complications Frequency of Surgical Treatment for Diabetic Retinopathy. Ophthalmology in Russia. 2025;22(1):54-62. (In Russ.) doi: https://doi.org/10.18008/1816-5095-2025-1-54-62
32. Auvazian SL, Cano J, Leahy S, et al. Relating Retinal Vascular Oxygen Saturation and Microvasculature Morphology at Progressive Stages of Diabetic Retinopathy. Transl Vis Sci Technol. 2021;10(6):4. doi: https://doi.org/10.1167/tvst.10.6.4
33. Sugano Y, Maeda S, Kato Y, et al. Morphometrics in three dimensional choroidal vessel models constructed from swept-source optical coherence tomography images. Sci Rep. 2022;12(1):15130. doi: https://doi.org/10.1038/s41598-022-17039-9
34. Sivaprasad S, Prevost AT, Vasconcelos JC, et al. Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (CLARITY): a multicentre, single-blinded, randomised, controlled, phase 2b, non-inferiority trial. Lancet. 2017;389(10085):2193-2203. doi: https://doi.org/10.1016/S0140-6736(17)31193-5
35. Nicholson L, Crosby-Nwaobi R, Vasconcelos JC, et al. Mechanistic Evaluation of Panretinal Photocoagulation Versus Aflibercept in Proliferative Diabetic Retinopathy: CLARITY Substudy. Invest Ophthalmol Vis Sci. 2018;59(10):4277-4284. doi: https://doi.org/10.1167/iovs.17-23509
Supplementary files
|
1. Figure 1. Graph showing the progression of diabetic retinopathy after pancreas transplantation depending on the duration of diabetes in the pre-transplant period [11, 21–25]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(280KB)
|
Indexing metadata ▾ |
Review
For citations:
Arzhimatova G.S., Bulava E.V., Gusakov M.V., Dmitriev I.V. Factors for diabetic retinopathy progression and macular edema development after pancreas transplantation. Diabetes mellitus. 2025;28(3):249-258. (In Russ.) https://doi.org/10.14341/DM13306

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).