Preview

Сахарный диабет

Расширенный поиск

Сахарный диабет и псориатический артрит

https://doi.org/10.14341/DM13296

Аннотация

Псориатический артрит (ПсА) и псориаз (ПсО) часто ассоциируются с метаболическими нарушениями, включая ожирение, метаболический синдром, сахарный диабет (СД), и кардиоваскулярными заболеваниями (КВЗ). Считают, что ожирение, СД, ПсО и ПсА имеют сходные иммунопатогенетические механизмы. Хроническое воспаление тесно ассоциируется не только с развитием ПсО и ПсА, но и с формированием инсулинорезистентности и развитием СД. У больных СД, как и при ПсО и ПсА, повышены острофазовые показатели и провоспалительные цитокины, включая С-реактивный белок, фактор некроза опухоли α (ФНО-α), интерлейкины 1 и 6 (ИЛ-1 и ИЛ-6), которые независимо от наличия ожирения ассоциируются с развитием инсулинорезистентности. При ПсА и ПсО использование ингибиторов ФНО-α повышает чувствительность к инсулину и снижает инсулинорезистентность. Показано, что ингибитор ИЛ-12/23 устекинумаб замедляет развитие СД 1 типа у больных ПсО. Учитывая высокую распространенность СД при ПсА и ПсО, следует проводить скрининг для выявления заболевания. При выборе терапии пациентам с ПсА, ПсО в сочетании с СД 2 типа следует учитывать возможность некоторых лекарственных препаратов улучшать состояние углеводного обмена, а также использовать при необходимости сахароснижающие препараты.

Об авторах

Т. С. Паневин
Научно-исследовательский институт ревматологии им. В.А. Насоновой; Дальневосточный государственный медицинский университет
Россия

Паневин Тарас Сергеевич - к.м.н.

115522, Москва, Каширское шоссе, 34А


Конфликт интересов:

Нет



А. А. Неупокоева
Научно-исследовательский институт ревматологии им. В.А. Насоновой
Россия

Неупокоева Анастасия Андреевна – ординатор.

Москва


Конфликт интересов:

Нет



Т. В. Коротаева
Научно-исследовательский институт ревматологии им. В.А. Насоновой
Россия

Коротаева Татьяна Викторовна - д.м.н.

Москва


Конфликт интересов:

Нет



Список литературы

1. Ritchlin CT, Colbert RA, Gladman DD. Psoriatic arthritis. N Engl J Med. 2017;376(10):957-70. doi: https://doi.org/10.1056/NEJMra1505557

2. Merola JF, Tian H, Patil D, Richardson C, Scott A, Chen YH, et al. Incidence and prevalence of psoriatic arthritis in patients with psoriasis stratified by psoriasis disease severity: Retrospective analysis of an electronic health records database in the United States. J Am Acad Dermatol. 2022;86(4):748-757. doi: https://doi.org/10.1016/j.jaad.2021.09.019

3. Stirnimann M, Maul JT, Vallejo-Yagüe E, Burden AM, Moeller B, Nissen MJ, et al. OP0064 Obesity in psoriatic arthritis is increasingly affecting men and appears less dependent of socioeconomic status than in the general population. Ann Rheum Dis. 2023;82:44. doi: https://doi.org/10.1136/annrheumdis-2023-eular.3678

4. Chandrasekaran P, Weiskirchen R. The Role of Obesity in Type 2 Diabetes Mellitus-An Overview. Int J Mol Sci. 2024;25(3):1882. doi: https://doi.org/10.3390/ijms25031882

5. Корсакова Ю.Л., Коротаева Т.В., Логинова Е.Ю., и др. Клиникоинструментальная характеристика псориатического артрита у мужчин и женщин. Данные когортного наблюдательного исследования // Терапевтический архив. — 2024. — Т. 96. — №5. — С. 479-485. doi: https://doi.org/10.26442/00403660.2024.05.202703

6. Корсакова Ю.Л., Коротаева Т.В., Логинова Е.Ю., Губарь Е.Е., Василенко Е.А., и др. Взаимосвязь ожирения, кардиометаболических нарушений и активности заболевания у больных псориатическим артритом: данные Общероссийского регистра // Терапевтический архив. — 2021. — Т. 93. — № 5. — С. 573–580 doi: https://doi.org/10.26442/00403660.2021.05.200

7. Dal Bello G, Gisondi P, Idolazzi L, Girolomoni G. Psoriatic Arthritis and Diabetes Mellitus: A Narrative Review. Rheumatol Ther. 2020;7(2):271-285. doi: https://doi.org/10.1007/s40744-020-00206-7

8. Coto-Segura P, Eiris-Salvado N, González-Lara L, et al. Psoriasis, psoriatic arthritis and type 2 diabetes mellitus: a systematic review and meta-analysis. Br J Dermatol. 2013;169(4):783-793. doi: https://doi.org/10.1111/bjd.12473

9. Eder L, Chandran V, Cook R, Gladman DD. The Risk of Developing Diabetes Mellitus in Patients with Psoriatic Arthritis: A Cohort Study. J Rheumatol. 2017;44(3):286-291. doi: https://doi.org/10.3899/jrheum.160861

10. Mok CC, Ko GT, Ho LY, Yu KL, Chan PT, To CH. Prevalence of atherosclerotic risk factors and the metabolic syndrome in patients with chronic inflammatory arthritis. Arthritis Care Res (Hoboken). 2011;63(2):195-202. doi: https://doi.org/10.1002/acr.20363

11. Dubreuil M, Rho YH, Man A, et al. Diabetes incidence in psoriatic arthritis, psoriasis and rheumatoid arthritis: a UK population-based cohort study. Rheumatology (Oxford). 2014;53(2):346-352. doi: https://doi.org/10.1093/rheumatology/ket343

12. Shah K, Paris M, Mellars L, Changolkar A, Mease PJ. Real-world burden of comorbidities in US patients with psoriatic arthritis. RMD Open. 2017;3(2):e000588. doi: https://doi.org/10.1136/rmdopen-2017-000588

13. Dreiher J, Freud T, Cohen AD. Psoriatic arthritis and diabetes: a population-based cross-sectional study. Dermatol Res Pract. 2013;2013:580404. doi: https://doi.org/10.1155/2013/580404

14. Bhole VM, Choi HK, Burns LC, et al. Differences in body mass index among individuals with PsA, psoriasis, RA and the general population. Rheumatology (Oxford). 2012;51(3):552-556. doi: https://doi.org/10.1093/rheumatology/ker349

15. Queiro R, Lorenzo A, Pardo E, Brandy A, Coto P, Ballina J. Prevalence and type II diabetes-associated factors in psoriatic arthritis. Clin Rheumatol. 2018;37(4):1059-1064. doi: https://doi.org/10.1007/s10067-018-4042-1

16. Дедов И.И., Шестакова М.В., Викулова О.К., и соавт. Сахарный диабет в Российской Федерации: динамика эпидемиологических показателей по данным Федерального регистра сахарного диабета за период 2010–2022 гг. // Сахарный диабет. 2023. — Т.26. — №2. — С.104-123 doi: https://doi.org/10.14341/DM13035

17. Калмыкова З.А., Кононенко И.В., Смирнова О.М., Шестакова М.В. Сигнальные пути гибели β-клеток при сахарном диабете 2 типа: роль врожденного иммунитета // Сахарный диабет. — 2020. — Т. 23. — №2. — С. 174-184 doi: https://doi.org/10.14341/DM10242

18. Scala E, Mercurio L, Albanesi C, Madonna S. The Intersection of the Pathogenic Processes Underlying Psoriasis and the Comorbid Condition of Obesity. Life (Basel). 2024;14(6):733. doi: https://doi.org/10.3390/life14060733

19. Al-Hashemi WKH, Taha GI, Aldhaher ZA, Mutlak SS. Interleukin 23 and HSV in diabetic and non-diabetic obese females. Biochemical & Cellular Archives. 2022;22(1):721-725

20. Abdel-Moneim A, Bakery HH, Allam G. The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. Biomed Pharmacother. 2018;101:287-292. doi: https://doi.org/10.1016/j.biopha.2018.02.103

21. Cohen AD, Dreiher J, Shapiro Y, et al. Psoriasis and diabetes: a population-based cross-sectional study. J Eur Acad Dermatol Venereol. 2008;22(5):585-589. doi: https://doi.org/10.1111/j.1468-3083.2008.02636.x

22. Wolk K, Sabat R. Adipokines in psoriasis: An important link between skin inflammation and metabolic alterations. Rev Endocr Metab Disord. 2016;17(3):305-317. doi: https://doi.org/10.1007/s11154-016-9381-0

23. Shibata S, Saeki H, Tada Y, Karakawa M, Komine M, Tamaki K. Serum high molecular weight adiponectin levels are decreased in psoriasis patients. J Dermatol Sci. 2009;55(1):62-63. doi: https://doi.org/10.1016/j.jdermsci.2009.02.009

24. Shibata S, Tada Y, Hau C, et al. Adiponectin as an anti-inflammatory factor in the pathogenesis of psoriasis: induction of elevated serum adiponectin levels following therapy. Br J Dermatol. 2011;164(3):667-670. doi: https://doi.org/10.1111/j.1365-2133.2010.10123.x

25. White MF, Kahn CR. The insulin signaling system. J Biol Chem. 1994;269(1):1-4

26. Kanety H, Feinstein R, Papa MZ, Hemi R, Karasik A. Tumor necrosis factor alpha-induced phosphorylation of insulin receptor substrate-1 (IRS-1). Possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1. J Biol Chem. 1995;270(40):23780-23784. doi: https://doi.org/10.1074/jbc.270.40.23780

27. Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 2002;277(2):1531-1537. doi: https://doi.org/10.1074/jbc.M101521200

28. Nanus DE, Filer AD, Hughes B, et al. TNFα regulates cortisol metabolism in vivo in patients with inflammatory arthritis. Ann Rheum Dis. 2015;74(2):464-469. doi: https://doi.org/10.1136/annrheumdis-2013-203926

29. Coates LC, Soriano ER, Corp N, et al. Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA): updated treatment recommendations for psoriatic arthritis 2021 [published correction appears in Nat Rev Rheumatol. 2022;18(12):734. doi: 10.1038/s41584-022-00861-w]. Nat Rev Rheumatol. 2022;18(8):465-479. doi: https://doi.org/10.1038/s41584-022-00798-0

30. Aimo C, Cosentino VL, Sequeira G, Kerzberg E. Use of systemic glucocorticoids in patients with psoriatic arthritis by Argentinian and other Latin-American rheumatologists. Rheumatol Int. 2019;39(4):723-727. doi: https://doi.org/10.1007/s00296-019-04266-z

31. Hwang JL, Weiss RE. Steroid-induced diabetes: a clinical and molecular approach to understanding and treatment. Diabetes Metab Res Rev. 2014;30(2):96-102. doi: https://doi.org/10.1002/dmrr.2486

32. Katsuyama T, Sada KE, Namba S, et al. Risk factors for the development of glucocorticoid-induced diabetes mellitus. Diabetes Res Clin Pract. 2015;108(2):273-279. doi: https://doi.org/10.1016/j.diabres.2015.02.010

33. Szeto CC, Sugano K, Wang JG, et al. Non-steroidal anti-inflammatory drug (NSAID) therapy in patients with hypertension, cardiovascular, renal or gastrointestinal comorbidities: joint APAGE/APLAR/APSDE/ APSH/APSN/PoA recommendations. Gut. 2020;69(4):617-629. doi: https://doi.org/10.1136/gutjnl-2019-319300

34. Dehpouri T, Rokni GR, Narenjbon NA, et al. Evaluation of the glycemic effect of methotrexate in psoriatic arthritis patients with metabolic syndrome: A pilot study. Dermatol Reports. 2019;11(1):7965. doi: https://doi.org/10.4081/dr.2019.7965

35. Chen HH, Chen DY, Lin CC, et al. Association between use of disease-modifying antirheumatic drugs and diabetes in patients with ankylosing spondylitis, rheumatoid arthritis, or psoriasis/ psoriatic arthritis: a nationwide, population-based cohort study of 84,989 patients. Ther Clin Risk Manag. 2017;13:583-592. doi: https://doi.org/10.2147/TCRM.S130666

36. Chen J, Sun J, Doscas ME, et al. Control of hyperglycemia in male mice by leflunomide: mechanisms of action. J Endocrinol. 2018;237(1):43-58. doi: https://doi.org/10.1530/JOE-17-0536

37. Haas RM, Li P, Chu JW. Glucose-lowering effects of sulfasalazine in type 2 diabetes. Diabetes Care. 2005;28(9):2238-2239. doi: https://doi.org/10.2337/diacare.28.9.2238

38. da Silva BS, Bonfá E, de Moraes JC, et al. Effects of anti-TNF therapy on glucose metabolism in patients with ankylosing spondylitis, psoriatic arthritis or juvenile idiopathic arthritis. Biologicals. 2010;38(5):567-569. doi: https://doi.org/10.1016/j.biologicals.2010.05.003

39. Solomon DH, Massarotti E, Garg R, Liu J, Canning C, Schneeweiss S. Association between disease-modifying antirheumatic drugs and diabetes risk in patients with rheumatoid arthritis and psoriasis. JAMA. 2011;305(24):2525-2531. doi: https://doi.org/10.1001/jama.2011.878

40. Egeberg A, Wu JJ, Korman N, et al. Ixekizumab treatment shows a neutral impact on cardiovascular parameters in patients with moderate-to-severe plaque psoriasis: Results from UNCOVER-1, UNCOVER-2, and UNCOVER-3. J Am Acad Dermatol. 2018;79(1):104-109.e8. doi: https://doi.org/10.1016/j.jaad.2018.02.074

41. Gerdes S, Pinter A, Papavassilis C, Reinhardt M. Effects of secukinumab on metabolic and liver parameters in plaque psoriasis patients. J Eur Acad Dermatol Venereol. 2020;34(3):533-541. doi: https://doi.org/10.1111/jdv.16004

42. Hasnain SZ, Borg DJ, Harcourt BE, et al. Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress. Nat Med. 2014;20(12):1417-1426. doi: https://doi.org/10.1038/nm.3705

43. Vaiopoulos AG, Dalamaga M, Katsimbri P, et al. Real-world data show high efficacy of IL23 inhibitors guselkumab and risankizumab in psoriatic arthritis and difficult-to-treat areas. Int J Dermatol. 2023;62(11):1404-1413. doi: https://doi.org/10.1111/ijd.16849

44. Pyne NJ, Furman BL. Cyclic nucleotide phosphodiesterases in pancreatic islets. Diabetologia. 2003;46(9):1179-1189. doi: https://doi.org/10.1007/s00125-003-1176-7

45. Dattola A, Del Duca E, Saraceno R, Gramiccia T, Bianchi L. Safety evaluation of apremilast for the treatment of psoriasis. Expert Opin Drug Saf. 2017;16(3):381-385. doi: https://doi.org/10.1080/14740338.2017.1288714

46. Puig L, Korman N, Greggio C, Cirulli J, Teng L, Chandran V, et al. Long-term hemoglobin A1c changes with apremilast in patients with psoriasis and psoriatic arthritis: pooled analysis of phase 3 ESTEEM and PALACE trials and phase 3b LIBERATE trial. J Am Acad Dermatol. 2019;81:89. doi: https://doi.org/10.1016/j.jaad.2019.06.346

47. Ritchlin CT, Giles JT, Ogdie A, et al. Tofacitinib in Patients With Psoriatic Arthritis and Metabolic Syndrome: A Post hoc Analysis of Phase 3 Studies. ACR Open Rheumatol. 2020;2(10):543-554. doi: https://doi.org/10.1002/acr2.11166

48. Di Muzio C, Di Cola I, Shariat Panahi A, et al. The effects of suppressing inflammation by tofacitinib may simultaneously improve glycaemic parameters and inflammatory markers in rheumatoid arthritis patients with comorbid type 2 diabetes: a proof-of-concept, open, prospective, clinical study. Arthritis Res Ther. 2024;26(1):14. doi: https://doi.org/10.1186/s13075-023-03249-7

49. Jia Y, Lao Y, Zhu H, Li N, Leung SW. Is metformin still the most efficacious first-line oral hypoglycaemic drug in treating type 2 diabetes? A network meta-analysis of randomized controlled trials. Obes Rev. 2019;20(1):1-12. doi: https://doi.org/10.1111/obr.12753

50. Елисеев М.С., Паневин Т.С., Желябина О.В., Насонов Е.Л. Перспективы применения метформина у пациентов с нарушением уратного обмена // Терапевтический архив. — 2021. — Т. 93. — №5. — С. 628-634. doi: https://doi.org/10.26442/00403660.2021.05.200795

51. Mangoni AA, Sotgia S, Zinellu A, et al. Methotrexate and cardiovascular prevention: an appraisal of the current evidence. Ther Adv Cardiovasc Dis. 2023;17:17539447231215213. doi: https://doi.org/10.1177/17539447231215213

52. Liu Y, Yang F, Ma W, Sun Q. Metformin inhibits proliferation and proinflammatory cytokines of human keratinocytes in vitro via mTOR-signaling pathway. Pharm Biol. 2016;54(7):1173-1178. doi: https://doi.org/10.3109/13880209.2015.1057652

53. Li W, Ma W, Zhong H, Liu W, Sun Q. Metformin inhibits proliferation of human keratinocytes through a mechanism associated with activation of the MAPK signaling pathway. Exp Ther Med. 2014;7(2):389-392. doi: https://doi.org/10.3892/etm.2013.1416

54. Singh S, Bhansali A. Randomized placebo control study of insulin sensitizers (Metformin and Pioglitazone) in psoriasis patients with metabolic syndrome (Topical Treatment Cohort). BMC Dermatol. 2016;16(1):12. doi: https://doi.org/10.1186/s12895-016-0049-y

55. Singh S, Bhansali A. Randomized Placebo Control Study of Metformin in Psoriasis Patients with Metabolic Syndrome (Systemic Treatment Cohort). Indian J Endocrinol Metab. 2017;21(4):581-587. doi: https://doi.org/10.4103/ijem.IJEM_46_17

56. Tam HTX, Thuy LND, Vinh NM, Anh TN, Van BT. The Combined Use of Metformin and Methotrexate in Psoriasis Patients with Metabolic Syndrome. Dermatol Res Pract. 2022;2022:9838867. doi: https://doi.org/10.1155/2022/9838867

57. Su YJ, Chen TH, Hsu CY, Chiu WT, Lin YS, Chi CC. Safety of Metformin in Psoriasis Patients With Diabetes Mellitus: A 17-Year Population-Based Real-World Cohort Study. J Clin Endocrinol Metab. 2019;104(8):3279-3286. doi: https://doi.org/10.1210/jc.2018-02526

58. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature. 1998;391(6662):79-82. doi: https://doi.org/10.1038/34178

59. Ellis CN, Varani J, Fisher GJ, et al. Troglitazone improves psoriasis and normalizes models of proliferative skin disease: ligands for peroxisome proliferator-activated receptor-gamma inhibit keratinocyte proliferation. Arch Dermatol. 2000;136(5):609-616. doi: https://doi.org/10.1001/archderm.136.5.609

60. Malhotra A, Shafiq N, Rajagopalan S, Dogra S, Malhotra S. Thiazolidinediones for plaque psoriasis: a systematic review and meta-analysis. Evid Based Med. 2012;17(6):171-176. doi: https://doi.org/10.1136/ebmed-2011-100388

61. Chang G, Wang J, Song J, Zhang Z, Zhang L. Efficacy and safety of pioglitazone for treatment of plaque psoriasis: a systematic review and meta-analysis of randomized controlled trials. J Dermatolog Treat. 2020;31(7):680-686. doi: https://doi.org/10.1080/09546634.2019.1610552

62. Bongartz T, Coras B, Vogt T, Schölmerich J, Müller-Ladner U. Treatment of active psoriatic arthritis with the PPARgamma ligand pioglitazone: an open-label pilot study. Rheumatology (Oxford). 2005;44(1):126-129. doi: https://doi.org/10.1093/rheumatology/keh423

63. Zhao Y, Yang L, Wang X, Zhou Z. The new insights from DPP-4 inhibitors: their potential immune modulatory function in autoimmune diabetes. Diabetes Metab Res Rev. 2014;30(8):646-653. doi: https://doi.org/10.1002/dmrr.2530

64. Makdissi A, Ghanim H, Vora M, et al. Sitagliptin exerts an antinflammatory action. J Clin Endocrinol Metab. 2012;97(9):3333-3341. doi: https://doi.org/10.1210/jc.2012-1544

65. van Lingen RG, van de Kerkhof PC, Seyger MM, et al. CD26/ dipeptidyl-peptidase IV in psoriatic skin: upregulation and topographical changes. Br J Dermatol. 2008;158(6):1264-1272. doi: https://doi.org/10.1111/j.1365-2133.2008.08515.x

66. Thielitz A, Reinhold D, Vetter R, et al. Inhibitors of dipeptidyl peptidase IV and aminopeptidase N target major pathogenetic steps in acne initiation. J Invest Dermatol. 2007;127(5):1042-1051. doi: https://doi.org/10.1038/sj.jid.5700439

67. Nishioka T, Shinohara M, Tanimoto N, Kumagai C, Hashimoto K. Sitagliptin, a dipeptidyl peptidase-IV inhibitor, improves psoriasis. Dermatology. 2012;224(1):20-21. doi: https://doi.org/10.1159/000333358

68. Nagai H, Fujiwara S, Takahashi Y, Nishigori C. Ameliorating effect of the novel dipeptidyl peptidase-4 inhibitor teneligliptin on psoriasis: A report of two cases. J Dermatol. 2015;42(11):1094-1097. doi: https://doi.org/10.1111/1346-8138.12955

69. Lynch M, Malara A, Timoney I, et al. Dipeptidyl Peptidase-4 Inhibition in Psoriasis Patients with Diabetes: A Double-Blind Randomized Controlled Trial. Dermatology. 2021;237(1):66-69. doi: https://doi.org/10.1159/000502130

70. Mehdi SF, Pusapati S, Anwar MS, et al. Glucagon-like peptide-1: a multi-faceted anti-inflammatory agent. Front Immunol. 2023;14:1148209. doi: https://doi.org/10.3389/fimmu.2023.1148209

71. Насонов Е.Л., Паневин Т.С., Трошина Е.А. Агонисты рецепторов глюкагоноподобного пептида-1: перспективы применения в ревматологии // Научно-практическая ревматология. — 2024. — Т. 62. — №2. — С. 135–144. doi: https://doi.org/10.47360/1995-4484-2024-135-144

72. Faurschou A, Pedersen J, Gyldenløve M, et al. Increased expression of glucagon-like peptide-1 receptors in psoriasis plaques. Exp Dermatol. 2013;22(2):150-152. doi: https://doi.org/10.1111/exd.12081

73. Buysschaert M, Baeck M, Preumont V, et al. Improvement of psoriasis during glucagon-like peptide-1 analogue therapy in type 2 diabetes is associated with decreasing dermal γδ T-cell number: a prospective case-series study. Br J Dermatol. 2014;171(1):155-161. doi: https://doi.org/10.1111/bjd.12886

74. Ahern T, Tobin AM, Corrigan M, et al. Glucagon-like peptide-1 analogue therapy for psoriasis patients with obesity and type 2 diabetes: a prospective cohort study. J Eur Acad Dermatol Venereol. 2013;27(11):1440-1443. doi: https://doi.org/10.1111/j.1468-3083.2012.04609.x

75. Chang G, Chen B, Zhang L. Efficacy of GLP-1rA, liraglutide, in plaque psoriasis treatment with type 2 diabetes: a systematic review and meta-analysis of prospective cohort and before-after studies. J Dermatolog Treat. 2022;33(3):1299-1305. doi: https://doi.org/10.1080/09546634.2021.1882658

76. Costanzo G, Curatolo S, Busà B, Belfiore A, Gullo D. Two birds one stone: semaglutide is highly effective against severe psoriasis in a type 2 diabetic patient. Endocrinol Diabetes Metab Case Rep. doi: https://doi.org/10.1530/EDM-21-0007

77. Malavazos AE, Meregalli C, Sorrentino F, et al. Semaglutide therapy decreases epicardial fat inflammation and improves psoriasis severity in patients affected by abdominal obesity and type-2 diabetes. Endocrinol Diabetes Metab Case Rep. 2023;2023(3):23-0017. doi: https://doi.org/10.1530/EDM-23-0017

78. Petković-Dabić J, Binić I, Carić B, et al. Effects of Semaglutide Treatment on Psoriatic Lesions in Obese Patients with Type 2 Diabetes Mellitus: An Open-Label, Randomized Clinical Trial. Biomolecules. 2025;15(1):46. doi: https://doi.org/10.3390/biom15010046

79. Al Bahadly WKY, Bdioui A, Al-Gazally M, Al-Saedi H, Salah SHB, Ramadhan M. The effect of dapagliflozin ointment on induced psoriasis in an experimental model. J Med Life. 2024;17(3):281-285. doi: https://doi.org/10.25122/jml-2023-0084

80. Qureshi SA, Finch SE, Pratt ME. A case of probable drug-induced psoriasis to dapagliflozin. SAGE Open Med Case Rep. 2024;12:2050313X241284003. doi: https://doi.org/10.1177/2050313X241284003

81. Ma KS, Tsai SY, Holt A, Chen ST. Effects of sodium-glucose cotransporter-2 inhibitors on inflammatory skin diseases in patients with type 2 diabetes. J Am Acad Dermatol. 2024;91(5):934-936. doi: https://doi.org/10.1016/j.jaad.2024.04.079

82. Ma SH, Wu CY, Lyu YS, Chou YJ, Chang YT, Wu CY. Association between sodium-glucose co-transporter 2 inhibitors and risk of psoriasis in patients with diabetes mellitus: a nationwide population-based cohort study. Clin Exp Dermatol. 2022;47(12):2242-2250. doi: https://doi.org/10.1111/ced.15385

83. Паневин Т.С., Зоткин Е.Г., Трошина Е.А. Аутоиммунный полиэндокринный синдром взрослых. Фокус на ревматологические аспекты проблемы // Терапевтический архив. — 2023. — Т. 95. — №10. — С. 881-887. doi: https://doi.org/10.26442/00403660.2023.10.202484

84. Bowes J, Loehr S, Budu-Aggrey A, et al. PTPN22 is associated with susceptibility to psoriatic arthritis but not psoriasis: evidence for a further PsA-specific risk locus. Ann Rheum Dis. 2015;74(10):1882-1885. doi: https://doi.org/10.1136/annrheumdis-2014-207187

85. Bottini N, Vang T, Cucca F, Mustelin T. Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin Immunol. 2006;18(4):207-213. doi: https://doi.org/10.1016/j.smim.2006.03.008

86. Ciaffi J, Mele G, Mancarella L, et al. Prevalence of Type 2 and Type 1 Diabetes in Psoriatic Arthritis: An Italian Study. J Clin Rheumatol. 2022;28(2):e324-e329. doi: https://doi.org/10.1097/RHU.0000000000001706

87. Fatima N, Faisal SM, Zubair S, et al. Role of Pro-Inflammatory Cytokines and Biochemical Markers in the Pathogenesis of Type 1 Diabetes: Correlation with Age and Glycemic Condition in Diabetic Human Subjects. PLoS One. 2016;11(8):e0161548. doi: https://doi.org/10.1371/journal.pone.0161548

88. Granata M, Skarmoutsou E, Trovato C, Rossi GA, Mazzarino MC, D’Amico F. Obesity, Type 1 Diabetes, and Psoriasis: An Autoimmune Triple Flip. Pathobiology. 2017;84(2):71-79. doi: https://doi.org/10.1159/000447777

89. Wilcox NS, Rui J, Hebrok M, Herold KC. Life and death of β cells in Type 1 diabetes: A comprehensive review. J Autoimmun. 2016;71:51-58. doi: https://doi.org/10.1016/j.jaut.2016.02.001

90. Honkanen J, Nieminen JK, Gao R, et al. IL-17 immunity in human type 1 diabetes. J Immunol. 2010;185(3):1959-1967. doi: https://doi.org/10.4049/jimmunol.1000788

91. Herold KC, Bundy BN, Long SA, et al. An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes [published correction appears in N Engl J Med. 2020 Feb 6;382(6):586. doi: https://doi.org/10.1056/NEJMx190033]. N Engl J Med. 2019;381(7):603-613. doi: https://doi.org/10.1056/NEJMoa1902226

92. Rigby MR, Harris KM, Pinckney A, et al. Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. J Clin Invest. 2015;125(8):3285-3296. doi: https://doi.org/10.1172/JCI81722

93. Gregory JW, Carter K, Cheung WY, et al. Phase II multicentre, double-blind, randomised trial of ustekinumab in adolescents with new-onset type 1 diabetes (USTEK1D): trial protocol. BMJ Open. 2021;11(10):e049595. doi: https://doi.org/10.1136/bmjopen-2021-049595

94. Tatovic D, Marwaha A, Taylor P, et al. Ustekinumab for type 1 diabetes in adolescents: a multicenter, double-blind, randomized phase 2 trial. Nat Med. 2024;30(9):2657-2666. doi: https://doi.org/10.1038/s41591-024-03115-2

95. Marwaha AK, Tan S, Dutz JP. Targeting the IL-17/IFN-γ axis as a potential new clinical therapy for type 1 diabetes. Clin Immunol. 2014;154(1):84-89. doi: https://doi.org/10.1016/j.clim.2014.06.006


Дополнительные файлы

Рецензия

Для цитирования:


Паневин Т.С., Неупокоева А.А., Коротаева Т.В. Сахарный диабет и псориатический артрит. Сахарный диабет. 2025;28(3):240-248. https://doi.org/10.14341/DM13296

For citation:


Panevin T.S., Neupokoeva A.A., Korotaeva T.V. Diabetes mellitus and psoriatic arthritis. Diabetes mellitus. 2025;28(3):240-248. (In Russ.) https://doi.org/10.14341/DM13296

Просмотров: 28


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)