Sodium-glucose cotransporter 2 inhibitors as potential anticancer agents
https://doi.org/10.14341/DM13224
Abstract
Oncological diseases are one of the leading causes of mortality in the world. Despite the intensive search for new methods to increase the efficacy and safety of antineoplastic therapy and to reduce resistance to it by malignant tumors, treatment issues still remain unresolved in clinical oncology. This review analyses experimental data on the antineoplastic effect of sodium-glucose cotransporter 2 (SGLT2) inhibitors: the reasons why SGLT2 inhibitors can be used for the treatment of malignant tumors are presented, class-specificity and dose-dependence of the antineoplastic effect of the drugs are determined. Possible mechanisms of antitumor effect of glyflozins are described in detail, among which, in addition to reduction of glucose entry into tumor cells, inhibition of Wnt/β-catenin signalling pathway, enhancement of AMP activated protein kinase activity with subsequent change of lipid profile of tumor cells and inhibition of mTOR protein kinase (mammalian target of rapamycin), disruption of DNA and RNA synthesis in malignant tumor cells, etc. play a significant role. Considerable space is devoted to the pro-oncogenic effect of SGLT2 inhibitors, previously undisputed and now disproved, as well as to the interaction of this class of antidiabetic agents with other antitumor treatment in the context of efficacy, safety and therapeutic resistance.
About the Authors
E. R. RadkevichRussian Federation
Elizaveta R. Radkevich, clinical resident
11 Dmitriy Ulyanova street, 117292 Moscow
A. S. Severina
Russian Federation
Anastasia S. Severina, MD, PhD, leading research associate
Moscow
M. S. Shamkhalova
Russian Federation
Minara S. Shamkhalova, MD, PhD
Moscow
M. V. Shestakova
Russian Federation
Marina V. Shestakova, MD, PhD, Professor, Academician of the RAS
Moscow
References
1. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117-2128. doi: https://doi.org/10.1056/NEJMoa1504720
2. Maejima Y. SGLT2 Inhibitors Play a Salutary Role in Heart Failure via Modulation of the Mitochondrial Function. Front Cardiovasc Med. 2020;6:186. doi: https://doi.org/10.3389/fcvm.2019.00186
3. Zhu B, Qu S. The Relationship Between Diabetes Mellitus and Cancers and Its Underlying Mechanisms. Front Endocrinol (Lausanne). 2022;13:800995. doi: https://doi.org/10.3389/fendo.2022.800995
4. Basak D, Gamez D, Deb S. SGLT2 Inhibitors as Potential Anticancer Agents. Biomedicines. 2023;11(7):1867. doi: https://doi.org/10.3390/biomedicines11071867
5. Memorial Sloan Kettering Cancer Center. Preventing High Blood Sugar in People Being Treated for Metastatic Breast Cancer. Available online: https://ClinicalTrials.gov/show/NCT05090358
6. Washington University School of Medicine Children’s Discovery Institute. Targeting Pediatric Brain Tumors with Sodium Glucose Cotransporter 2 Inhibitors (SGLT2i). Available online: https://ClinicalTrials.gov/show/NCT05521984
7. Filippas-Ntekouan S, Filippatos TD, Elisaf MS. SGLT2 inhibitors: are they safe? Postgrad Med. 2018;130(1):72-82. doi: https://doi.org/10.1080/00325481.2018.1394152
8. Tang H, Dai Q, Shi W, et al. SGLT2 inhibitors and risk of cancer in type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Diabetologia. 2017;60(10):1862-1872. doi: https://doi.org/10.1007/s00125-017-4370-8
9. De Jonghe S, Proctor J, Vinken P, et al. Carcinogenicity in rats of the SGLT2 inhibitor canagliflozin. Chem Biol Interact. 2014;224:1-12. doi: https://doi.org/10.1016/j.cbi.2014.09.018
10. Taub ME, Ludwig-Schwellinger E, Ishiguro N, et al. Sex-, Species-, and Tissue-Specific Metabolism of Empagliflozin in Male Mouse Kidney Forms an Unstable Hemiacetal Metabolite (M466/2) That Degrades to 4-Hydroxycrotonaldehyde, a Reactive and Cytotoxic Species. Chem Res Toxicol. 2015;28(1):103-115. doi: https://doi.org/10.1021/tx500380t
11. Prentice DE, Meikle AW. A review of drug-induced Leydig cell hyperplasia and neoplasia in the rat and some comparisons with man. Hum Exp Toxicol. 1995;14(7):562-572. doi: https://doi.org/10.1177/096032719501400703
12. Dutka M, Bobiński R, Francuz T, et al. SGLT-2 Inhibitors in Cancer Treatment-Mechanisms of Action and Emerging New Perspectives. Cancers (Basel). 2022;14(23):5811. doi: https://doi.org/10.3390/cancers14235811
13. Lin HW, Tseng CH. A Review on the Relationship between SGLT2 Inhibitors and Cancer. Int J Endocrinol. 2014;2014:719578. doi: https://doi.org/10.1155/2014/719578
14. Shestakova MV, Sukhareva OY. Gliflozins: glucose-lowering and nonglycemic effects of new class of antidiabetic medications. Klinicheskaia farmakologiia i terapiia. 2016;25(2):65-71. (In Russ.)
15. Suissa M, Yin H, Yu OHY, Wong SM, Azoulay L. Sodium-Glucose Cotransporter 2 Inhibitors and the Short-term Risk of Breast Cancer Among Women With Type 2 Diabetes. Diabetes Care. 2021;44(1):e9-e11. doi: https://doi.org/10.2337/dc20-1073
16. Billger M, Kirk J, Chang J, et al. A study in a rat initiation-promotion bladder tumour model demonstrated no promoter/progressor potential of dapagliflozin. Regul Toxicol Pharmacol. 2019;103:166-173. doi: https://doi.org/10.1016/j.yrtph.2019.01.031
17. Bardaweel S, Issa A. Exploring the Role of Sodium-Glucose Cotransporter as a New Target for Cancer Therapy. J Pharm Pharm Sci. 2022;25:253-265. doi: https://doi.org/10.18433/jpps32879
18. Kuang H, Liao L, Chen H, Kang Q, Shu X, Wang Y. Therapeutic Effect of Sodium Glucose Co-Transporter 2 Inhibitor Dapagliflozin on Renal Cell Carcinoma. Med Sci Monit. 2017;23:3737-3745. doi: https://doi.org/10.12659/msm.902530
19. Park LK, Lim KH, Volkman J, et al. Safety, tolerability, and effectiveness of the sodium-glucose cotransporter 2 inhibitor (SGLT2i) dapagliflozin in combination with standard chemotherapy for patients with advanced, inoperable pancreatic adenocarcinoma: a phase 1b observational study. Cancer Metab. 2023;11(1):6. doi: https://doi.org/10.1186/s40170-023-00306-2
20. Hendryx M, Dong Y, Ndeke JM, Luo J. Sodium-glucose cotransporter 2 (SGLT2) inhibitor initiation and hepatocellular carcinoma prognosis. PLoS One. 2022;17(9):e0274519. doi: https://doi.org/10.1371/journal.pone.0274519
21. Jojima T, Wakamatsu S, Kase M, et al. The SGLT2 Inhibitor Canagliflozin Prevents Carcinogenesis in a Mouse Model of Diabetes and Non-Alcoholic Steatohepatitis-Related Hepatocarcinogenesis: Association with SGLT2 Expression in Hepatocellular Carcinoma. Int J Mol Sci. 2019;20(20):5237. doi: https://doi.org/10.3390/ijms20205237
22. Yoshioka N, Tanaka M, Ochi K, et al. The sodium-glucose cotransporter-2 inhibitor Tofogliflozin prevents the progression of nonalcoholic steatohepatitis-associated liver tumors in a novel murine model. Biomed Pharmacother. 2021;140:111738. doi: https://doi.org/10.1016/j.biopha.2021.111738
23. Abdelhamid AM, Saber S, Youssef ME, et al. Empagliflozin adjunct with metformin for the inhibition of hepatocellular carcinoma progression: Emerging approach for new application. Biomed Pharmacother. 2022;145:112455. doi: https://doi.org/10.1016/j.biopha.2021.112455
24. Nakano D, Kawaguchi T, Iwamoto H, Hayakawa M, Koga H, Torimura T. Effects of canagliflozin on growth and metabolic reprograming in hepatocellular carcinoma cells: Multiomics analysis of metabolomics and absolute quantification proteomics (iMPAQT). PLoS One. 2020;15(4):e0232283. doi: https://doi.org/10.1371/journal.pone.0232283
25. Bose S, Zhang C, Le A. Glucose Metabolism in Cancer: The Warburg Effect and Beyond. Adv Exp Med Biol. 2021;1311:3-15. doi: https://doi.org/10.1007/978-3-030-65768-0_1
26. Komatsu S, Nomiyama T, Numata T, et al. SGLT2 inhibitor ipragliflozin attenuates breast cancer cell proliferation. Endocr J. 2020;67(1):99-106. doi: https://doi.org/10.1507/endocrj.EJ19-0428
27. Zhou J, Zhu J, Yu SJ, et al. Sodium-glucose co-transporter-2 (SGLT-2) inhibition reduces glucose uptake to induce breast cancer cell growth arrest through AMPK/mTOR pathway. Biomed Pharmacother. 2020;132:110821. doi: https://doi.org/10.1016/j.biopha.2020.110821
28. Yamamoto L, Yamashita S, Nomiyama T, et al. Sodium-glucose cotransporter 2 inhibitor canagliflozin attenuates lung cancer cell proliferation in vitro. Diabetol Int. 2021;12(4):389-398. doi: https://doi.org/10.1007/s13340-021-00494-6
29. Okada J, Yamada E, Saito T, et al. Dapagliflozin Inhibits Cell Adhesion to Collagen I and IV and Increases Ectodomain Proteolytic Cleavage of DDR1 by Increasing ADAM10 Activity. Molecules. 2020;25(3):495. doi: https://doi.org/10.3390/molecules25030495
30. Hung MH, Chen YL, Chen LJ, et al. Canagliflozin inhibits growth of hepatocellular carcinoma via blocking glucose-influxinduced β-catenin activation. Cell Death Dis. 2019;10(6):420. doi: https://doi.org/10.1038/s41419-019-1646-6
31. Park SJ, Kim TS, Park KH, Kwon WS, Kim JJ. Serum concentration of sex hormone-binding globulin in healthy volunteers and patients with breast cancer stratified by sex and age. Oncol Lett. 2020;20(1):364-372. doi: https://doi.org/10.3892/ol.2020.11549
32. Papadopoli D, Uchenunu O, Palia R, et al. Perturbations of cancer cell metabolism by the antidiabetic drug canagliflozin. Neoplasia. 2021;23(4):391-399. doi: https://doi.org/10.1016/j.neo.2021.02.003
33. Leprivier G, Rotblat B. How does mTOR sense glucose starvation? AMPK is the usual suspect. Cell Death Discov. 2020;6:27. doi: https://doi.org/10.1038/s41420-020-0260-9
34. Coperchini F, Greco A, Croce L, et al. Canagliflozin reduces thyroid cancer cells migration in vitro by inhibiting CXCL8 and CCL2: An additional anti-tumor effect of the drug. Biomed Pharmacother. 2024;170:115974. doi: https://doi.org/10.1016/j.biopha.2023.115974
35. Luis G, Godfroid A, Nishiumi S, et al. Tumor resistance to ferroptosis driven by Stearoyl-CoA Desaturase-1 (SCD1) in cancer cells and Fatty Acid Biding Protein-4 (FABP4) in tumor microenvironment promote tumor recurrence. Redox Biol. 2021;43:102006. doi: https://doi.org/10.1016/j.redox.2021.102006
36. Biziotis OD, Tsakiridis EE, Ali A, et al. Canagliflozin mediates tumor suppression alone and in combination with radiotherapy in non-small cell lung cancer (NSCLC) through inhibition of HIF-1α. Mol Oncol. 2023;17(11):2235-2256. doi: https://doi.org/10.1002/1878-0261.13508
37. Rao H, Cheng W, Yu J, et al. 恩格列净通过雷帕霉素靶点蛋白抑制 胃癌的分子机制初探 [Preliminary Investigation of the Molecular Mechanism of Empagliflozin Suppressing Gastric Cancer Through Mammalian Target of Rapamycin]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2023;54(6):1146-1153. doi: https://doi.org/10.12182/20231160204
38. Xu D, Zhou Y, Xie X, et al. Inhibitory effects of canagliflozin on pancreatic cancer are mediated via the downregulation of glucose transporter-1 and lactate dehydrogenase A. Int J Oncol. 2020;57(5):1223-1233. doi: https://doi.org/10.3892/ijo.2020.5120
39. Nakachi S, Okamoto S, Tamaki K, et al. Impact of antidiabetic sodium-glucose cotransporter 2 inhibitors on tumor growth of intractable hematological malignancy in humans. Biomed Pharmacother. 2022;149:112864. doi: https://doi.org/10.1016/j.biopha.2022.112864
40. Chen XY, Li DF, Han JC, et al. Reprogramming induced by isoliquiritigenin diminishes melanoma cachexia through mTORC2- AKT-GSK3β signaling. Oncotarget. 2017;8(21):34565-34575. doi: https://doi.org/10.18632/oncotarget.16655
41. Wu W, Zhang Z, Jing D, et al. SGLT2 inhibitor activates the STING/IRF3/IFN-β pathway and induces immune infiltration in osteosarcoma. Cell Death Dis. 2022;13(6):523. doi: https://doi.org/10.1038/s41419-022-04980-w
42. Cruys B, Wong BW, Kuchnio A, et al. Glycolytic regulation of cell rearrangement in angiogenesis. Nat Commun. 2016;7:12240. doi: https://doi.org/10.1038/ncomms12240
43. Mao W, Zhang J, Körner H, Jiang Y, Ying S. The Emerging Role of Voltage-Gated Sodium Channels in Tumor Biology. Front Oncol. 2019;9:124. doi: https://doi.org/10.3389/fonc.2019.00124
44. Quagliariello V, De Laurentiis M, Rea D, et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc Diabetol. 2021;20(1):150. doi: https://doi.org/10.1186/s12933-021-01346-y
45. Avula V, Sharma G, Kosiborod MN, et al. SGLT2 Inhibitor Use and Risk of Clinical Events in Patients With Cancer TherapyRelated Cardiac Dysfunction. JACC Heart Fail. 2024;12(1):67-78. doi: https://doi.org/10.1016/j.jchf.2023.08.026
46. Chang A, Botteri E, Gillis RD, et al. Beta-blockade enhances anthracycline control of metastasis in triple-negative breast cancer. Sci Transl Med. 2023;15(693):eadf1147. doi: https://doi.org/10.1126/scitranslmed.adf1147
47. Zhong J, Sun P, Xu N, et al. Canagliflozin inhibits p-gp function and early autophagy and improves the sensitivity to the antitumor effect of doxorubicin. Biochem Pharmacol. 2020;175:113856. doi: https://doi.org/10.1016/j.bcp.2020.113856
48. Angelopoulou A, Kolokithas-Ntoukas A, Papaioannou L, et al. Canagliflozin-loaded magnetic nanoparticles as potential treatment of hypoxic tumors in combination with radiotherapy. Nanomedicine (Lond). 2018;13(19):2435-2454. doi: https://doi.org/10.2217/nnm-2018-0145
49. Jump DB. Fatty acid regulation of hepatic lipid metabolism. Curr Opin Clin Nutr Metab Care. 2011;14(2):115-120. doi: https://doi.org/10.1097/MCO.0b013e328342991c
50. Scheen AJ. An update on the safety of SGLT2 inhibitors. Expert Opin Drug Saf. 2019;18(4):295-311. doi: https://doi.org/10.1080/14740338.2019.1602116
51. Bersoff-Matcha SJ, Chamberlain C, Cao C, Kortepeter C, Chong WH. Fournier Gangrene Associated With Sodium-Glucose Cotransporter-2 Inhibitors: A Review of Spontaneous Postmarketing Cases. Ann Intern Med. 2019;170(11):764-769. doi: https://doi.org/10.7326/M19-0085
52. Saisho Y. SGLT2 Inhibitors: the Star in the Treatment of Type 2 Diabetes? Diseases. 2020;8(2):14. doi: https://doi.org/10.3390/diseases8020014
53. Posado-Domínguez L, Figuero-Pérez L, Aránzazu Amores-Martín M, et al. Complications Secondary to the Use Of Sglt2 Inhibitors in Oncological Patients: A Series of 5 Cases. Eur J Case Rep Intern Med. 2023;11(1):004216. doi: https://doi.org/10.12890/2023_004216
54. Packer M. Lessons learned from the DAPA-HF trial concerning the mechanisms of benefit of SGLT2 inhibitors on heart failure events in the context of other large-scale trials nearing completion. Cardiovasc Diabetol. 2019;18(1):129. doi: https://doi.org/10.1186/s12933-019-0938-6
55. Anker SD, Butler J, Filippatos G, et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med. 2021;385(16):1451-1461. doi: https://doi.org/10.1056/NEJMoa2107038
Supplementary files
|
1. Рисунок 1. Механизмы противоопухолевого эффекта ингибиторов натрий-глюкозного котранспортера 2 типа (адаптировано из [4]). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(762KB)
|
Indexing metadata ▾ |
|
2. Рисунок 2. Механизм противоопухолевого эффекта канаглифлозина путем ингибирования β-катенина и усиления его протеасомной деградации в клетках ГЦК (адаптировано из [12]). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(464KB)
|
Indexing metadata ▾ |
|
3. Рисунок 3. Механизмы противоопухолевого эффекта ингибиторов натрий-глюкозного котранспортера 2 типа, включая центральную роль активации AMPK (адаптировано из [12]). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(959KB)
|
Indexing metadata ▾ |
Review
For citations:
Radkevich E.R., Severina A.S., Shamkhalova M.S., Shestakova M.V. Sodium-glucose cotransporter 2 inhibitors as potential anticancer agents. Diabetes mellitus. 2025;28(2):243-251. (In Russ.) https://doi.org/10.14341/DM13224

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).