Preview

Diabetes mellitus

Advanced search

Modern understanding of latent autoimmune diabetes in adults

https://doi.org/10.14341/DM12994

Abstract

Latent autoimmune diabetes in adults (LADA) according to various sources is from 4 to 12% of all cases of type 2 diabetes mellitus (T2DM). Its uniqueness lies in the simultaneous combination of autoantibodies to β-cells (characteristic of T1DM) and the possibility of treatment with oral hypoglycemic drugs (characteristic of T2DM) for at least 6 months. This is based on the pathogenesis common for T1DM and T2DM — the presence of an autoimmune reaction with the simultaneous involvement of adaptive and innate immunity, as well as, to a lesser extent, insulin resistance and a number of components of the metabolic syndrome. LADA has more in common with T1DM — the same stages in the development of the disease, from genetic predisposition to the undoubted development of insulin dependence, the difference lies in the duration of each of the periods and the age of manifestation. LADA is characterized by an older age of manifestation of 30–35 years and a slower rate of destruction of β-cells. This article presents data on the diagnosis, progress of LADA, its similarities and differences with other types of DM, and immunological features. The article also analyzes the modern approach to the treatment of patients with LADA and promising methods of treatment. The search for information was processing in published sources attached to the search engines PubMed, Google Scholar, Scopus, Web of Science, eLibrary.ru over the past 10 years. The following medical subject headings were used: latent autoimmune diabetes in adults, diabetes mellitus type 1 and 2, immunology, pancreas, genetic, treatment in various combinations using OR and AND logical operators.

About the Authors

I. I. Golodnikov
Endocrinology Research Centre
Russian Federation

Ivan I. Golodnikov - MD, PhD student; Researcher ID: AAJ-8843-2021; Scopus Author ID: 57208628509

11 Dm. Ulyanova street, 117036 Moscow


Competing Interests:

none



N. V. Rusyaeva
Endocrinology Research Centre
Russian Federation

Nadezhda V. Rusyaeva -- MD, PhD student; Researcher ID: AAY-6365-2021; Scopus Author ID: 5722002496.

Moscow


Competing Interests:

none



T. V. Nikonova
Endocrinology Research Centre
Russian Federation

Tatiana V. Nikonova - MD, PhD.

Moscow


Competing Interests:

none



I. V. Kononenko
Endocrinology Research Centre
Russian Federation

Irina V. Kononenko - MD, PhD, Аssociate Professor; Researcher ID: H-5947-2016; Scopus Author ID: 35744972400.

Moscow


Competing Interests:

none



M. V. Shestakova
Endocrinology Research Centre
Russian Federation

Marina V. Shestakova - MD, PhD, Professor, Academician of Russian Academy of Medical Sciences; Researcher ID: D-9123-2012; Scopus Author ID: 7004195530.

Moscow


Competing Interests:

none



References

1. Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183(1):109119. doi: https://doi.org/10.1016/j.diabres.2021.109119

2. Kononenko IV, Smirnova OM, Mayorov AYu, et al. Classification of diabetes. WHO 2019 What’s new?. Diabetes mellitus. 2020;23(4):329-339 (In Russ.)]. doi: https://doi.org/10.14341/DM12405

3. Tuomi T, Groop LC, Zimmet PZ, et al. Antibodies to glutamic acid decarboxylase reveal latent autoimmune diabetes mellitus in adults with a non-insulin-dependent onset of disease. Diabetes. 1993;42(2):359-62. doi: https://doi.org/10.2337/diab.42.2.359

4. Schernthaner G, Hink S, Kopp H, et al. Progress in the characterization of slowly progressive autoimmune diabetes in adult patients (LADA or type 1,5 diabetes). Exp Clin Endocrinol Diabetes. 2001;109(S2):S94-S108. doi: https://doi.org/10.1055/s-2001-18573

5. Besser REJ, Bell KJ, Couper JJ, et al. ISPAD clinical practice consensus guidelines 2022: Stages of type 1 diabetes in children and adolescents. Pediatric Diabetes. 2022;23(8):1175-1187. doi: https://doi.org/10.1111/pedi.13410

6. Yin W, Luo S, Xiao Z, et al. Latent autoimmune diabetes in adults: a focus on β-cell protection and therapy. Front Endocrinol (Lausanne). 2022;(13). doi: https://doi.org/10.3389/fendo.2022.959011

7. Liu L, Li X, Xiang Y, et al. Latent autoimmune diabetes in adults with low-titer GAD antibodies: similar disease progression with type 2 diabetes: a nationwide, multicenter prospective study (LADA China Study 3). Diabetes Care. 2015;38(1):16-21. doi: https://doi.org/10.2337/dc14-1770

8. Huang G, Yin M, Xiang Y, et al. Persistence of glutamic acid decarboxylase antibody (GADA) is associated with clinical characteristics of latent autoimmune diabetes in adults: a prospective study with 3-year follow-up. Diabetes Metab Res Rev. 2016;32(6):615-622. doi: https://doi.org/10.1002/dmrr.2779

9. Rajkumar V, Levine S. Latent Autoimmune Diabetes. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing Accessed; 10.09.2022 [cited 26.05.23]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557897/

10. Wang Z, Zhang J, Xu H, et al. Development and Validation of a Prevalence Model for Latent Autoimmune Diabetes in Adults (LADA) Among Patients First Diagnosed with Type 2 Diabetes Mellitus (T2DM). Med Sci Monit. 2021;(27). doi: https://doi.org/10.12659/MSM.932725

11. Lampasona V, Petrone A, Tiberti C, et al. Zinc transporter 8 antibodies complement GAD and IA-2 antibodies in the identification and characterization of adult-onset autoimmune diabetes: Non insulin requiring autoimmune diabetes (NIRAD) 4. Diabetes Care. 2010;33(1):104-108. doi: https://doi.org/10.2337/dc08-2305

12. Nikonova TV, Apanovich PV, Pekareva EV, et al. Immunogenetic aspects of slowly progressive autoimmune diabetes in adults (LADA). Diabetes mellitus. 2011;14(1):28-34. (In Russ.). doi: https://doi.org/10.14341/2072-0351-6247

13. Hawa MI, Kolb H, Schloot N, et al. Adult-onset autoimmune diabetes in Europe is prevalent with a broad clinical phenotype: Action LADA 7. Diabetes Care. 2013;36(4):908-913. doi: https://doi.org/10.2337/dc12-0931

14. Signore A, Capriotti G, Chianelli M, et al. Detection of insulitis by pancreatic scintigraphy with 99mTc-labeled IL-2 and MRI in patients with LADA (Action LADA 10). Diabetes Care. 2015;38(4):652-658. doi: https://doi.org/10.2337/dc14-0580

15. Carlsson S. Etiology and pathogenesis of latent autoimmune diabetes in adults (lada) compared to type 2 diabetes. Front Physiol. 2019;(10). doi: https://doi.org/10.3389/fphys.2019.00320

16. Maddaloni E, Lessan N, Al Tikriti A, et al. Latent autoimmune diabetes in adults in the United Arab Emirates: Clinical features and factors related to insulin-requirement. PLoS One. 2015;10(8):e0131837. doi: https://doi.org/10.1371/journal.pone.0131837

17. Lee SH, Kwon HS, Yoo SJ, et al. Identifying latent autoimmune diabetes in adults in Korea: the role of C-peptide and metabolic syndrome. Diabetes Res Clin Pract. 2009;83(2):e62-65. doi: https://doi.org/10.1016/j.diabres.2008.11.031

18. Tuomi T, Carlsson A, Li H, et al. Clinical and genetic characteristics of type 2 diabetes with and without GAD antibodies. Diabetes. 1999;48(1):150-157. doi: https://doi.org/10.2337/diabetes.48.1.150

19. Hawa MI, Thivolet C, Mauricio D, et al. Metabolic syndrome and autoimmune diabetes: action LADA 3. Diabetes Care. 2009;32(1):160-164. doi: https://doi.org/10.2337/dc08-1419

20. Nkonge KM, Nkonge DK, Nkonge TN. The epidemiology, molecular pathogenesis, diagnosis, and treatment of maturity-onset diabetes of the young (MODY). Clin Diabetes Endocrinol. 2020;6(1):20. doi: https://doi.org/10.1186/s40842-020-00112-5

21. Shields BM, Hicks S, Shepherd MH, et al. Maturityonset diabetes of the young (MODY): how many cases are we missing? Diabetologia. 2010;53(12):2504-2508. doi: https://doi.org/10.1007/s00125-010-1799-4

22. Pihoker C, Gilliam LK, Ellard S, et al. Prevalence, characteristics and clinical diagnosis of maturity onset diabetes of the young due to mutations in HNF1A, HNF4A, and glucokinase: results from the SEARCH for diabetes in youth. J Clin Endocrinol Metab. 2013;98(10):4055-4062. doi: https://doi.org/10.1210/jc.2013-1279

23. Urakami T. Maturity-onset diabetes of the young (MODY): current perspectives on diagnosis and treatment. Diabetes Metab Syndr Obes. 2019;(12):1047-1056. doi: https://doi.org/10.2147/dmso.S179793

24. Carroll RW, Murphy R. Monogenic diabetes: a diagnostic algorithm for clinicians. Genes (Basel). 2013;4(4):522-35. doi: https://doi.org/10.3390/genes4040522

25. Nikonova TV. Type 1 diabetes mellitus and latent autoimmune diabetes in adults (LADA): clinical, immunogenetic and hormonal-metabolic aspects. International Journal of Endocrinology. 2011;7(39):24-32. (In Russ.).

26. Choo SY. The HLA system: genetics, immunology, clinical testing, and clinical implications. Yonsei Med J. 2007;48(1):11-23. doi: https://doi.org/10.3349/ymj.2007.48.1.11

27. Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;125(S2):S3-23. doi: https://doi.org/10.1016/j.jaci.2009.12.980

28. Zakharova MJ, Belyanina TA, Sokolov AV, et al. Contribution of class II major histocompatibility complex genes to susceptibility to autoimmune diseases. ActaNaturae. 2019;11(4):4-12. (In Russ.). doi: https://doi.org/10.32607/20758251-2019-11-4-4-12

29. Wang M, Claesson MH. Classification of human leukocyte antigen (HLA) supertypes. Methods Mol Biol. 2014;(1184):309-317. doi: https://doi.org/10.1007/978-1-4939-1115-8_17

30. Smirnova OM, Kononenko IV, Dedov II. Heterogeneity of diabetes mellitus. Autoimmune latent diabetes mellitus in adults (LADA): definition, prevalence, clinical features, diagnosis, treatment principles. Diabetes mellitus. 2008;11(4):18-23. (In Russ.)]. doi: https://doi.org/10.14341/2072-0351-5583

31. Luo S, Lin J, Xie Z, et al. HLA genetic discrepancy between latent autoimmune diabetes in adults and type 1 diabetes: LADA China study No. 6. J Clin Endocrinol Metab. 2016;101(4):1693-1700. doi: https://doi.org/10.1210/jc.2015-3771

32. Chen W, Chen X, Zhang M, Huang Z. The association of human leukocyte antigen class II (HLA II) haplotypes with the risk of Latent autoimmune diabetes of adults (LADA): Evidence based on available data. Gene. 2021;(767):145177. doi: https://doi.org/10.1016/j.gene.2020.145177

33. Haimila K, Smedberg T, Mustalahti K, et al. Genetic association of coeliac disease susceptibility to polymorphisms in the ICOS gene on chromosome 2q33. Genes Immun. 2004;5(2):85-92. doi: https://doi.org/10.1038/sj.gene.6364040

34. Cunninghame Graham DS, Wong AK, McHugh NJ, et al. Evidence for unique association signals in SLE at the CD28-CTLA4-ICOS locus in a family-based study. Hum Mol Genet. 2006;15(21):3195-3205. doi: https://doi.org/10.1093/hmg/ddl395

35. Chuang WY, Ströbel P, Gold R, et al. A CTLA4high genotype is associated with myasthenia gravis in thymoma patients. Ann Neurol. 2005;58(4):644-648. doi: https://doi.org/10.1002/ana.20577

36. Tector M, Khatri BO, Kozinski K, et al. Biochemical analysis of CTLA-4 immunoreactive material from human blood. BMC Immunol. 2009;10(1):51. doi: https://doi.org/10.1186/1471-2172-10-51

37. Chikileva IO, Shubina IZH, Samoilenko IV, et al. Influence of antibodies to CTLA-4 and PD-1 on the content of their target receptors. Medical immunology. 2019;21(1):59-68. (In Russ.). doi: https://doi.org/10.15789/1563-0625-2019-1-59-68

38. Kisand K, Uibo R. LADA and T1D in Estonian population — two different genetic risk profiles. Gene. 2012;497(2):285-291. doi: https://doi.org/10.1016/j.gene.2012.01.089

39. Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Research. 2020;30(6):492-506. doi: https://doi.org/10.1038/s41422-020-0332-7

40. Clark R, Kupper T. Old meets new: the interaction between innate and adaptive immunity. J Invest Dermatol. 2005;125(4):629-637. doi: https://doi.org/10.1111/j.0022-202X.2005.23856.x

41. Murphy KM, Weaver C. Janeway’s Immunobiology: Tenth International Student Edition with Registration Card. 10th edition. W.W. Norton & Company; 2022.

42. Jörns A, Wedekind D, Jähne J, et al. Pancreas pathology of latent autoimmune diabetes in adults (LADA) in patients and in a LADA rat model compared with type 1 diabetes. Diabetes. 2020;69(4):624-633. doi: https://doi.org/10.2337/db19-0865

43. Yang Z, Zhou Z, Huang G, et al. The CD4(+) regulatory T-cells is decreased in adults with latent autoimmune diabetes. Diabetes Res Clin Pract. 2007;76(1):126-131. doi: https://doi.org/10.1016/j.diabres.2006.08.013

44. Nikonova TV, Apanovich PV, Pekareva EV, et al. The role of regulatory CD4+CD25+high T-lymphocytes and their functional activity in the development and progression of type 1 diabetes mellitus. Diabetes mellitus. 2010;13(3):25-31. (In Russ.). doi: https://doi.org/10.14341/2072-0351-5483

45. Gondek DC, Lu LF, Quezada SA, et al. Cutting edge: contactmediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol. 2005;174(4):1783-1786. doi: https://doi.org/10.4049/jimmunol.174.4.1783

46. Walker LSK. EFIS Lecture: Understanding the CTLA-4 checkpoint in the maintenance of immune homeostasis. Immunol Lett. 2017;184(1):43-50. doi: https://doi.org/10.1016/j.imlet.2017.02.007

47. Iwata Y, Matsushita T, Horikawa M, et al. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood. 2011;117(2):530-41. doi: https://doi.org/10.1182/blood-2010-07-294249

48. Lindroth K, Mastache EF, Roos I, et al. Understanding thymusindependent antigen-induced reduction of thymus-dependent immune responses. Immunology. 2004;112(3):413-419. doi: https://doi.org/10.1111/j.1365-2567.2004.01894.x

49. Marinkovic D, Marinkovic T. Putative role of marginal zone B cells in pathophysiological processes. Scand J Immunol. 2020;92(3):e12920. doi: https://doi.org/10.1111/sji.12920

50. Violeta Filip P, Cuciureanu D, Sorina Diaconu L, et al. MALT lymphoma: epidemiology, clinical diagnosis and treatment. J Med Life. 2018;11(3):187-193. doi: https://doi.org/10.25122/jml-2018-0035

51. Fillatreau S, Sweenie CH, McGeachy MJ, et al. B cells regulate autoimmunity by provision of IL-10. Nat Immunol. 2002;3(10):944-950. doi: https://doi.org/10.1038/ni833

52. Deng C, Xiang Y, Tan T, et al. Altered peripheral B-lymphocyte subsets in type 1 diabetes and latent autoimmune diabetes in adults. Diabetes Care. 2015;39(3):434-440. doi: https://doi.org/10.2337/dc15-1765

53. Gordon S, Plüddemann A. The mononuclear phagocytic system. Generation of diversity. Front Immunol. 2019;10(3). doi: https://doi.org/10.3389/fimmu.2019.01893

54. Hirayama D, Iida T, Nakase H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int J Mol Sci. 2017;19(1):92. doi: https://doi.org/10.3390/ijms19010092

55. Mohan JF, Kohler RH, Hill JA, et al. Imaging the emergence and natural progression of spontaneous autoimmune diabetes. Proc Natl Acad Sci USA. 2017;114(37):e7776-e7785. doi: https://doi.org/10.1073/pnas.1707381114

56. Denroche HC, Nackiewicz D, Verchere CB. When beta cells talk back. Diabetologia. 2018;61(1):39-42. doi: https://doi.org/10.1007/s00125-017-4443-8

57. Kacheva S, Lenzen S, Gurgul-Convey E. Differential effects of proinflammatory cytokines on cell death and ER stress in insulinsecreting INS1E cells and the involvement of nitric oxide. Cytokine. 2011;55(2):195-201. doi: https://doi.org/10.1016/j.cyto.2011.04.002

58. Fatima N, Faisal SM, Zubair S, et al. Role of Pro-inflammatory cytokines and biochemical markers in the pathogenesis of type 1 diabetes: Correlation with age and glycemic condition in diabetic human subjects. Plos One. 2016;11(8):e0161548. doi: https://doi.org/10.1371/journal.pone.0161548

59. Ortis F, Miani M, Colli ML, et al. Differential usage of NF-κB activating signals by IL-1β and TNF-α in pancreatic beta cells. FEBS Lett. 2012;586(7):984-989. doi: https://doi.org/10.1016/j.febslet.2012.02.021

60. Actor JK. Cells and Organs of the Immune System. In: Actor JK, ed. Elsevier’s Integrated Review Immunology and Microbiology (Second Edition). W.B. Saunders; 2012. P. 7-16.

61. Serhan CN, Ward PA, Gilroy DW. Fundamentals of Inflammation. Cambridge University Press; 2010.

62. Valle A, Giamporcaro GM, Scavini M, et al. Reduction of circulating neutrophils precedes and accompanies type 1 diabetes. Diabetes. 2013;62(6):2072-2077. doi: https://doi.org/10.2337/db12-1345

63. Wang Y, Xiao Y, Zhong L, et al. Increased neutrophil elastase and proteinase 3 and augmented NETosis are closely associated with β-cell autoimmunity in patients with type 1 diabetes. Diabetes. 2014;63(12):4239-4248. doi: https://doi.org/10.2337/db14-0480

64. Huang J, Xiao Y, Zheng P, et al. Distinct neutrophil counts and functions in newly diagnosed type 1 diabetes, latent autoimmune diabetes in adults, and type 2 diabetes. Diabetes Metab Res Rev. 2019;35(1):e3064. doi: https://doi.org/10.1002/dmrr.3064

65. Singh K, Martinell M, Luo Z, et al. Cellular immunological changes in patients with LADA are a mixture of those seen in patients with type 1 and type 2 diabetes. Clin Exp Immunol. 2019;197(1):64-73. doi: https://doi.org/10.1111/cei.13289

66. Dotta F, Censini S, van Halteren AG, et al. Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci USA. 2007;104(12):5115-5120. doi: https://doi.org/10.1073/pnas.0700442104

67. Willcox A, Richardson SJ, Bone AJ, et al. Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol. 2009;155(2):173-181. doi: https://doi.org/10.1111/j.1365-2249.2008.03860.x

68. Caligiuri MA. Human natural killer cells. Blood. 2008;112(3):461-469. doi: https://doi.org/10.1182/blood-2007-09-077438

69. Wang Y, Yuan W, Guo H, et al. High frequency of activated NKp46(+) natural killer cells in patients with new diagnosed of latent autoimmune diabetes in adults. Autoimmunity. 2015;48(4):267-273. doi: https://doi.org/10.3109/08916934.2014.990629

70. Belkina TV, Averina OV, Savenkova EV, et al. The human gut microbiome and the immune system: the role of probiotics in the formation of immunobiological potential that prevents the development of COVID-19 infection. Advances in modern biology. 2020;140(6):523-539. (In Russ.). doi: https://doi.org/10.31857/S0042132420060034

71. Jafarova KA, Jafarov EM. Role of the Microbiota in Immunity and inflammation. Biomedicine (Baku). 2020;18(3):4-9. (In Russ.). doi: https://doi.org/10.24411/1815-3917-2020-11811

72. Ramakrishna C, Kujawski M, Chu H, et al. Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis. Nat Commun. 2019;10(1):2153. doi: https://doi.org/10.1038/s41467-019-09884-6

73. Mazmanian SK, Liu CH, Tzianabos AO, et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107-118. doi: https://doi.org/10.1016/j.cell.2005.05.007

74. Salamon D, Sroka-Oleksiak A, Kapusta P, et al. Characteristics of gut microbiota in adult patients with type 1 and type 2 diabetes based on nextgeneration sequencing of the 16S rRNA gene fragment. Pol Arch Intern Med. 2018;128(6):336-343. doi: https://doi.org/10.20452/pamw.4246

75. Leiva-Gea I, Sánchez-Alcoholado L, Martín-Tejedor B, et al. Gut microbiota differs in composition and functionality between children with type 1 diabetes and MODY2 and healthy control subjects: A case-control study. Diabetes Care. 2018;41(11):2385-2395. doi: https://doi.org/10.2337/dc18-0253

76. Ermolenko E, Simanenkova A, Voropaeva L, et al. Metformin influence on the intestinal microbiota and organism of rats with metabolic syndrome. Int J Mol Sci. 2022;23(12):6837. doi: https://doi.org/10.3390/ijms23126837

77. Fang Y, Zhang C, Shi H, et al. Characteristics of the gut microbiota and metabolism in patients with latent autoimmune diabetes in adults: A case-control study. Diabetes Care. 2021;44(12):2738-2746. doi: https://doi.org/10.2337/dc20-2975

78. Puddu A, Sanguineti R, Montecucco F, Viviani GL. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediators Inflamm. 2014;2014(3):1-9. doi: https://doi.org/10.1155/2014/162021

79. Vinolo MA, Rodrigues HG, Nachbar RT, et al. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3(10):858-876. doi: https://doi.org/10.3390/nu3100858

80. Liu T, Li J, Liu Y, et al. Short-chain fatty acids suppress lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-κB pathway in RAW264.7 cells. Inflammation. 2012;35(5):1676-1684. doi: https://doi.org/10.1007/s10753-012-9484-z

81. Tian H, Wang S, Deng Y, et al. Fatty acid profiles and their association with autoimmunity, insulin sensitivity and β cell function in latent autoimmune diabetes in adults. Front Endocrinol (Lausanne). 2022;13(3):1-9. doi: https://doi.org/10.3389/fendo.2022.916981

82. Buzzetti R, Tuomi T, Mauricio D, et al. Management of latent autoimmune diabetes in adults: A consensus statement from an international expert panel. Diabetes. 2020;69(10):2037-2047. doi: https://doi.org/10.2337/dbi20-0017

83. GRLS. Registration certificate LP-002236. (In Russ.)]. Доступно по: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=70f3cab5-6a2549ae-b89c-725039a9247e Ссылка активна на: 19.09.22

84. Balykova LA, Shchekina NV, Krasnopolskaya AV, et al. The use of abatacept in a patient with seropositive polyarthritis at risk for tuberculosis infection. Questions of modern pediatrics. 2013;12(6):130-135. (In Russ.). doi: https://doi.org/10.15690/vsp.v12i6.888

85. Trubnikova NS, Shilova LN, Aleksandrov AV. Comorbid background problems in patients with rheumatoid arthritis. Vestnik VolgGMU. 2019;70(2):12-16. (In Russ.). doi: https://doi.org/10.19163/1994-9480-2019-2(70)-12-16

86. Koryakova NV, Polskaya II, Marusenko IM, et al. Diabetes mellitus in patients with rheumatoid arthritis in the Republic of Karelia. Modern rheumatology. 2020;14(2):57-61. (In Russ.)]. doi: https://doi.org/10.14412/1996-7012-2020-2-57-61

87. Kondratieva LV, Panafidina TA, Gerasimova EV, et al. Diabetes mellitus and hyperglycemia in patients with rheumatoid arthritis. Modern rheumatology. 2014;8(3):23-27 (In Russ.). doi: https://doi.org/10.14412/1996-7012-2014-3-23-27

88. Schenck S, Rosenbauer J, Niewerth M, et al. Comorbidity of type 1 diabetes mellitus in patients with juvenile idiopathic arthritis. J Pediatr. 2018;192(3):196-203. doi: https://doi.org/10.1016/j.jpeds.2017.07.050

89. Orban T, Bundy B, Becker DJ, et al. Costimulation modulation with abatacept in patients with recentonset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet. 2011;378(9789):412-419. doi: https://doi.org/10.1016/s0140-6736(11)60886-6

90. Orban T, Bundy B, Becker DJ, et al. Costimulation modulation with abatacept in patients with recent-onset type 1 diabetes: follow-up 1 year after cessation of treatment. Diabetes Care. 2014;37(4):1069-1075. doi: https://doi.org/10.2337/dc13-0604


Supplementary files

1. Figure 1. Phases of development of autoimmune diabetes mellitus.
Subject
Type Исследовательские инструменты
View (357KB)    
Indexing metadata ▾
2. Figure 2. Relative risk and 95% confidence interval for LADA and T2DM as a function of lifestyle factors.
Subject
Type Исследовательские инструменты
View (156KB)    
Indexing metadata ▾
3. Figure 3. CD28 and CTLA-4: T cell proteins with similar ligands and opposite functions.
Subject
Type Исследовательские инструменты
View (122KB)    
Indexing metadata ▾
4. Figure 4. Algorithm for managing patients with LADA.
Subject
Type Исследовательские инструменты
View (412KB)    
Indexing metadata ▾

Review

For citations:


Golodnikov I.I., Rusyaeva N.V., Nikonova T.V., Kononenko I.V., Shestakova M.V. Modern understanding of latent autoimmune diabetes in adults. Diabetes mellitus. 2023;26(3):262-274. (In Russ.) https://doi.org/10.14341/DM12994

Views: 12002


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)