Preview

Diabetes mellitus

Advanced search

The structure of mineral and bone disorders in patients with сhronic kidney disease of the 5th dialysis stage, taking into account the presence or absence of a diagnosis of type 1 diabetes mellitus

https://doi.org/10.14341/DM12958

Abstract

BACKGROUND: In patients with end-stage CKD, receiving renal replacement therapy (RRT) with programmed hemodialysis (HD), the severity of complications is associated with metabolic disturbances: accumulation of uremic toxins, nephrogenic anemia, secondary hyperparathyroidism (SHPT), extraskeletal calcification, impaired clearance and rhythm of hormone secretion.

AIM: To evaluate the main biochemical and hormonal parameters, and manifestations of mineral bone disease (MBD) in patients receiving RRT with HD, before and after hemodialysis, taking into account the presence or absence of diabetes mellitus.

MATERIALS AND METHODS: We divided all patients receiving RRT with HD in two groups: #1 (n=24) — patients with DM, #2 (n=16) — patients without DM. All of them had their blood analyzed before and immediately after the HD. Data analysis was performed with the Statistica 13 (StatSoft, USA). A prognostically significant model was considered at p<0.05.

RESULTS: The level of iPTH, both at baseline and after HD, was lower in group #1 (p<0.001). The level of alkaline phosphatase (AP) was significantly higher in group #2 (p=0.012). In both groups before HD, a high incidence of hypocalcemia was detected (according to albumin-corrected calcium in group #1 in 58.3%, in group #2 in 43.7% of cases, p = 0.366) and hyperphosphatemia (in 66.7% and in 43 .7% of cases, respectively, p=0.151). Hypocalcemia after HD in group #1 persisted in 14%, in group #2 — in 20% of cases (p>0.05); hyperphosphatemia in group #1 was completely leveled, in group #2 it persisted in 7% of cases (p=0.417). Prior to the HD session, group #1 had significantly higher levels of RAGE, glucagon, immunoreactive insulin (IRI), cortisol, and glucose than after the HD session (p<0.05). In group #2, after HD, the levels of glucagon, IRI and cortisol significantly decreased (p<0.05), and the level of 3-nitrotyrosine (3-HT) increased significantly (p=0.026). In group #1, fibrocalcinosis of the heart valves according to ECHO and calcification of the arteries of the lower extremities according to ultrasonic doplerography were more common than in group #2 (42% vs 25%, p<0.001 and 75% vs 37.5%, p=0.018, respectively). (χ2)). Compression fractures occurred with the same frequency in both groups (60%). A decrease in bone mineral density (BMD) to the level of osteopenia was noted more often in group #1 (50% vs 18.8%), and osteoporosis was more common in group #2 (68.8% vs 33.3%) (p<0.001, χ2).

CONCLUSION: The low level of PTH in group #1 may reflect the effect of diabetes on calcium-phosphorus metabolism. Patients with DM have an increased risk of renal osteodystrophy with a low bone turnover because of a number of metabolic factors inherent in diabetes. At the same time, the dynamics of phosphorus and calcium indicators during the HD procedure were similar.

About the Authors

I. S. Maganeva
Endocrinology Research Centre
Russian Federation

Irina S. Maganeva, MD

eLibrary SPIN: 2575-3091

11 Dm. Ul’yanova street, 117036 Moscow


Competing Interests:

Отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.



A. K. Eremkina
Endocrinology Research Centre
Russian Federation

Anna K. Eremkina, MD, PhD, leading research asscociate

eLibrary SPIN: 8848-2660

Moscow


Competing Interests:

Отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.



A. P. Miliutina
Endocrinology Research Centre; Pirogov Russian National Research Medical University
Russian Federation

Anastasiia P. Miliutina, MD

eLibrary SPIN: 6392-5111

Moscow


Competing Interests:

Отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.



S. A. Martynov
Endocrinology Research Centre
Russian Federation

Sergey A. Martynov, MD, PhD

eLibrary SPIN: 6231-2450

Moscow


Competing Interests:

Отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.



A. S. Severina
Endocrinology Research Centre
Russian Federation

Anastasia S. Severina, MD, PhD, leading research associate

eLibrary SPIN: 3182-9510

Moscow


Competing Interests:

Отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.



R. H. Salimkhanov
Endocrinology Research Centre
Russian Federation

Rustam Kh. Salimkhanov

eLibrary SPIN: 3988-3140

Moscow


Competing Interests:

Отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.



M. I. Evloeva
Endocrinology Research Centre
Russian Federation

Madina I. Yevloyeva

eLibrary SPIN: 4887-5455

Moscow


Competing Interests:

Отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.



M. Sh. Shamkhalova
Endocrinology Research Centre
Russian Federation

Minara S. Shamhalova, MD, PhD

eLibrary SPIN: 4942-5481

Moscow


Competing Interests:

Отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.



M. V. Shestakova
Endocrinology Research Centre
Russian Federation

Marina V. Shestakova MD, PhD, Professor

eLibrary SPIN: 7584-7015

Moscow


Competing Interests:

Отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.



N. G. Mokrysheva
Endocrinology Research Centre
Russian Federation

Natalia G. Mokrysheva, MD, PhD, Professor

eLibrary SPIN: 5624-3875

Moscow


Competing Interests:

Отсутствие явных и потенциальных конфликтов интересов, связанных с содержанием настоящей статьи.



References

1. Bikbov B, Purcell CA, Levey AS, et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395(10225):709-733. doi: https://doi.org/10.1016/S0140-6736(20)30045-3

2. Johansen KL, Chertow GM, Foley RN, Wetmore JB. US Renal Data System 2020 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis. 2021;77(4S1):A7-A8. doi: https://doi.org/10.1053/j.ajkd.2021.01.002

3. Jorgensen MB, Idorn T, Knop FK, et al. Clearance of glucoregulatory peptide hormones during haemodialysis and haemodiafiltration in non-diabetic end-stage renal disease patients. Nephrol Dial Transplant. 2015;30(3):513-520. doi: https://doi.org/10.1093/NDT/GFU327

4. Duranton F, Cohen G, De Smet R, et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012;23(7):1258-1270. doi: https://doi.org/10.1681/ASN.2011121175

5. Shinohara K, Shoji T, Emoto M, et al. Insulin resistance as an independent predictor of cardiovascular mortality in patients with end-stage renal disease. J Am Soc Nephrol. 2002;13(7):1894-1900. doi: https://doi.org/10.1097/01.ASN.0000019900.87535.43

6. Assiri A, Kamel HFM, ALrefai A. Critical Appraisal of Advanced Glycation End Products (AGEs) and Circulating Soluble Receptors for Advanced Glycation End Products (sRAGE) as a Predictive Biomarkers for Cardiovascular Disease in Hemodialysis Patients. Med Sci (Basel, Switzerland). 2018;6(2):38. doi: https://doi.org/10.3390/MEDSCI6020038

7. Byon CH, Chen Y. Molecular Mechanisms of Vascular Calcification in Chronic Kidney Disease: The Link between Bone and the Vasculature. Curr Osteoporos Rep. 2015;13(4):206. doi: https://doi.org/10.1007/S11914-015-0270-3

8. Abe M, Kalantar-Zadeh K. Haemodialysis-induced hypoglycaemia and glycaemic disarrays. Nat Rev Nephrol. 2015;11(5):302-313. doi: https://doi.org/10.1038/NRNEPH.2015.38

9. Nakao T, Inaba M, Abe M, et al. Best Practice for Diabetic Patients on Hemodialysis 2012. Ther Apher Dial. 2015;19(S1):40-66. doi: https://doi.org/10.1111/1744-9987.12299

10. Soleymanian T, Kokabeh Z, Ramaghi R, et al. Clinical outcomes and quality of life in hemodialysis diabetic patients versus non-diabetics. J Nephropathol. 2017;6(2):81. doi: https://doi.org/10.15171/JNP.2017.14

11. Ceriello A, Ihnat MA, Thorpe JE. The “Metabolic Memory”: Is More Than Just Tight Glucose Control Necessary to Prevent Diabetic Complications? J Clin Endocrinol Metab. 2009;94(2):410-415. doi: https://doi.org/10.1210/JC.2008-1824

12. Górriz JL, Molina P, Cerverón MJ, et al. Vascular calcification in patients with nondialysis CKD over 3 years. Clin J Am Soc Nephrol. 2015;10(4):654-666. doi: https://doi.org/10.2215/CJN.07450714

13. Mokrysheva NG, Egshatjan LV. Mineral’no-kostnyj obmen pri hronicheskoj bolezni pochek. Monografija. Moscow: MIA; 2020. (In Russ.).

14. Rozhinskaya LY, Egshatyan LV. Patologiya kostnoy sistemy pri vtorichnom giperparatireoze u patsientov s terminal’noystadiey khronicheskoy bolezni pochek na zamestitel’noypochechnoy terapii (gemodializ) (obzor literatury). Osteoporosis and Bone Diseases. 2010;13(2):18-22. (In Russ.). doi: https://doi.org/10.14341/osteo2010218-22

15. Rodriguez-Garcia M, Naves M, Cannata-Andнa J. Bone metabolism, vascular calcifications and mortality: associations beyond mere coincidence. J Nephrol. 2005;18:458-463.

16. Miller PD. Treatment of osteoporosis in chronic kidney disease and end-stage renal disease. Curr Osteoporos Rep. 2005;3(1):5-12. doi: https://doi.org/10.1007/s11914-005-0021-y.

17. Готье С.В., Хомяков С.М. Донорство и трансплантация органов в Российской Федерации в 2019 году. XII сообщение регистра Российского трансплантологического общества // Вестник трансплантологии и искусственных органов. — 2020. — Т. 22. — №2. — С. 8-34. doi: https://doi.org/10.15825/1995-1191-2020-2-8-34

18. Thornalley PJ, Battah S, Ahmed N, et al. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2017;7(1):1-59. doi: https://doi.org/10.1016/j.kisu.2017.04.001

19. Thornalley PJ, Battah S, Ahmed N, et al. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J. 2003;375(3):581-592. doi: https://doi.org/10.1042/bj20030763

20. Biragova MS, Glazunova AM, Shamkhalova MS, et al. The role of mineral and bone metabolism disorders in the development and progression of cardiac and renal pathology in the patients presenting with long-lasting type 1 diabetes mellitus. Problems of Endocrinology. 2013;59(5):16-24. (In Russ.). doi: https://doi.org/10.14341/probl201359516-24

21. Costantini S, Conte C. Bone health in diabetes and prediabetes. World J Diabetes. 2019;10(8):421-445. doi: https://doi.org/10.4239/WJD.V10.I8.421

22. Dobnig H, Pilz S, Scharnagl H, et al. Independent association of low serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels with all-cause and cardiovascular mortality. Arch Intern Med. 2008;168(12):1340-1349. doi: https://doi.org/10.1001/archinte.168.12.1340

23. Inaguma D, Nagaya H, Hara K, et al. Relationship between serum 1,25-dihydroxyvitamin D and mortality in patients with pre-dialysis chronic kidney disease. Clin Exp Nephrol. 2008;12(2):126-131. doi: https://doi.org/10.1007/s10157-007-0023-4

24. Baker LRI, Abrams SML, Roe CJ, et al. 1,25(OH)2D3 administration in moderate renal failure: A prospective double-blind trial. Kidney Int. 1989;35(2):661-669. doi: https://doi.org/10.1038/ki.1989.36

25. Watson KE, Abrolat ML, Malone LL, et al. Active Serum Vitamin D Levels Are Inversely Correlated With Coronary Calcification. Circulation. 1997;96(6):1755-1760. doi: https://doi.org/10.1161/01.CIR.96.6.1755

26. Teng M, Wolf M, Ofsthun MN, et al. Activated Injectable Vitamin D and Hemodialysis Survival: A Historical Cohort Study. J Am Soc Nephrol. 2005;16(4):1115-1125. doi: https://doi.org/10.1681/ASN.2004070573

27. Muñoz-Garach A, García-Fontana B, Muñoz-Torres M. Vitamin D status, calcium intake and risk of developing type 2 diabetes: an unresolved issue. Nutrients. 2019;11(3):642. doi: https://doi.org/10.3390/nu11030642

28. Liu C, Lu M, Xia X, et al. Correlation of serum vitamin D level with type 1 diabetes mellitus in children: A meta-analysis. Nutr Hosp. 2015;32(4):1591-1594. doi: https://doi.org/10.3305/nh.2015.32.4.9198

29. Feng R, Li Y, Li G, et al. Lower serum 25 (OH) D concentrations in type 1 diabetes: A meta-analysis. Diabetes Res Clin Pract. 2015;108(3):e71-75. doi: https://doi.org/10.1016/j.diabres.2014.12.008

30. Shen L, Zhuang Q-S, Ji H-F. Assessment of vitamin D levels in type 1 and type 2 diabetes patients: Results from metaanalysis. Mol Nutr Food Res. 2016;60(5):1059-1067. doi: https://doi.org/10.1002/mnfr.201500937

31. Povaliaeva AA, Pigarova EA, Dzeranova LK, Rozhinskaya LY. The relationship of vitamin D status with the development and course of diabetes mellitus type 1. Obesity and metabolism. 2020;17(1):82-87. (In Russ.). doi: https://doi.org/10.14341/omet12206

32. Colette C, Pares-Herbute N, Monnier L, et al. Effect of different insulin administration modalities on vitamin D metabolism of insulin-dependent diabetic patients. Horm Metab Res. 1989;21(1):37-41. doi: https://doi.org/10.1055/s-2007-1009144

33. Jørgensen MB, Idorn T, Knop FK, et al. Clearance of glucoregulatory peptide hormones during haemodialysis and haemodiafiltration in non-diabetic end-stage renal disease patients. Nephrol Dial Transplant. 2015;30(3):513-520. doi: https://doi.org/10.1093/NDT/GFU327

34. Ben-David E, Hull R, Banerjee D. Diabetes mellitus in dialysis and renal transplantation. Ther Adv Endocrinol Metab. 2021;12(3):204201882110486. doi: https://doi.org/10.1177/20420188211048663

35. Kalkhoff RK, Siegesmund KA. Fluctuations of calcium, phosphorus, sodium, potassium, and chlorine in single alpha and beta cells during glucose perifusion of rat islets. J Clin Invest. 1981;68(2):517-524. doi: https://doi.org/10.1172/JCI110283

36. Leclercq-Meyer V, Marchand J, Malaisse WJ. Calcium dependently of glucagons release: its modulation by nutritional factors. Am J Physiol. 1979;236(2):E98-E104. doi: https://doi.org/10.1152/ajpendo

37. Balabolkin MI, Klebanova EM, Kreminskaja VM. Differencial’naja diagnostika i lechenie jendokrinnyh zabolevanij (rukovodstvo). Moscow: «Medicina»; 2002. — 751 p. (In Russ.).

38. Cheung AK, Sarnak MJ, Yan G, et al. Cardiac diseases in maintenance hemodialysis patients: Results of the HEMO Study. Kidney Int. 2004;65(6):2380-2389. doi: https://doi.org/10.1111/j.1523-1755.2004.00657.x

39. Assiri A, Kamel HFM, Alrefai A. Critical appraisal of advanced glycation end products (AGEs) and circulating soluble receptors for advanced glycation end products (sRAGE) as a predictive biomarkers for cardiovascular disease in hemodialysis patients. Med Sci (Basel). 2018;6(2):38. doi: https://doi.org/10.3390/MEDSCI6020038

40. Tada Y, Yano S, Yamaguchi T, et al. Advanced glycation end products-induced vascular calcification is mediated by oxidative stress: functional roles of NAD(P)H-oxidase. Horm Metab Res. 2013;45(4):267-272. doi: https://doi.org/10.1055/S-0032-1329965

41. Byon CH, Chen Y. Molecular mechanisms of vascular calcification in chronic kidney disease: The link between bone and the vasculature. Curr Osteoporos Rep. 2015;13(4):206. doi: https://doi.org/10.1007/S11914-015-0270-3

42. Asenjo-Bueno A, Alcalde-Estévez E, El Assar M, et al. Hyperphosphatemia-Induced Oxidant/Antioxidant Imbalance Impairs Vascular Relaxation and Induces Inflammation and Fibrosis in Old Mice. Antioxidants. 2021;10(8):1308. doi: https://doi.org/10.3390/antiox10081308


Supplementary files

Review

For citations:


Maganeva I.S., Eremkina A.K., Miliutina A.P., Martynov S.A., Severina A.S., Salimkhanov R.H., Evloeva M.I., Shamkhalova M.Sh., Shestakova M.V., Mokrysheva N.G. The structure of mineral and bone disorders in patients with сhronic kidney disease of the 5th dialysis stage, taking into account the presence or absence of a diagnosis of type 1 diabetes mellitus. Diabetes mellitus. 2022;25(6):512-522. (In Russ.) https://doi.org/10.14341/DM12958

Views: 978


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)