Chronic kidney disease in patients with type 2 diabetes: new targets of medicine action
https://doi.org/10.14341/DM12944
Abstract
Diabetes mellitus type 2 (DM2) is socially important disease, becoming non-infectious epidemic due to increasing prevalence. Chronic kidney disease (CKD) is one of the most common diabetic complications. Kidney injury signs and/or estimated glomerular filtration rate (eGFR) decrease are seen in 40-50% of patients with DM2. Three groups of factors are considered to be the basis of CKD development and progression in DM2: metabolic, hemodynamic, inflammation and fibrosis. Existing drugs that are used in patients with CKD and DM2 first of all target hemodynamic and metabolic disturbances, but their action against inflammation and fibrosis is indirect. Hyperactivation of mineralocorticoid receptors (MR) is considered as one of the main trigger factors of end-organ damage in patients with DM2 due to inflammation and fibrosis. Development of selective nonsteroidal MR antagonists (MRA) as a new class of medications is directed to demonstrate positive effects from blocking this pathophysiological pathway of CKD development and overcome the steroidal MRAs’ shortcomings. Hence pathophysiological hyperactivation of MR with subsequent inflammation and fibrosis in patients with CKD in DM2 is considered a promising therapeutic target for the new drugs with cardionephroprotective effect.
About the Authors
N. P. TrubitsynaRussian Federation
Natalia P. Trubitsyna - MD, PhD, leading research associate.
11, Dm. Ul’yanova st., Moscow, 117036
Competing Interests:
декларирует отсутствие потенциального и явного конфликта интересов, связанного с публикацией
N. V. Zaitseva
Russian Federation
Natalia V. Zaitseva - MD, PhD, leading research associate; eLibrary SPIN: 8894-8815.
Moscow
Competing Interests:
декларирует отсутствие потенциального и явного конфликта интересов, связанного с публикацией
A. S. Severinа
Russian Federation
Anastasia S. Severina - MD, PhD, leading research associate; eLibrary SPIN: 3182-9510.
Moscow
Competing Interests:
декларирует отсутствие потенциального и явного конфликта интересов, связанного с публикацией
M. S. Shamkhalova
Russian Federation
Minara S. Shamhalova - MD, PhD; eLibrary SPIN: 4942-5481.
Moscow
Competing Interests:
лектор и участник экспертного совета компании «Байер» и других фармацевтических компаний
References
1. IDF Diabetes Atlas, 10th edition. International Diabetes Federation; 2021. Доступно по: https://diabetesatlas.org/. Ссылка активна на 23.11.2021.
2. Dedov II, Shestakova MV, Vikulova OK, et al. Epidemiological characteristics of diabetes mellitus in the Russian Federation: clinical and statistical analysis according to the Federal diabetes register data of 01.01.2021. Diabetes Mellitus. 2021;24(3):204-221. (In Russ.). doi: https://doi.org/10.14341/DM12759.
3. Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 2020;98(Suppl 4):S1-S115.
4. Shamkhalova MS, Vikulova OK, Zheleznyakova AV, et al. Trends in the epidemiology of chronic kidney disease in Russian Federation according to the Federal Diabetes Register (2013–2016). Diabetes Mellitus. 2018;21(3):160-169. (in Russ.). doi: https://doi.org/10.14341/DM9687.
5. Afkarian M, Sachs MC, Kestenbaum B, et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 2013;24(2):302-308. doi: https://doi.org/10.1681/ASN.2012070718.
6. Dedov II, Shestakova MV, Suntsov YI, et al. Federal targeted programme “Prevention and Management of Socially Significant Diseases (2007-2012)”: results of the “Diabetes mellitus” sub-programme. Diabetes mellitus. 2013;16(2S):1-48. (In Russ.). doi: https://doi.org/10.14341/2072-0351-3879.
7. Thomas MC, Brownlee M, Susztak K, et al. Diabetic kidney disease. Nat Rev Dis Primers. 2015;30;1:15018. doi: https://doi.org/10.1038/nrdp.2015.18.
8. Shlipak MG, Tummalapalli SL, Boulware LE, et al. The case for early identification and intervention of chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2021;99(1):34-47. doi: https://doi.org/10.1016/j.kint.2020.10.012.
9. Clinical recommendations. Chronic kidney disease (CKD). Nephrology (Saint-Petersburg). 2021;25(5):10-82. (In Russ.).
10. Dedov II, Shestakova MV, Mayorov AY, et al. Standards of specialized diabetes care. Edited by II Dedov, MV Shestakova, AYu Mayorov. 10th edition. Diabetes mellitus. 2021;24(S1). (In Russ.). doi: https://doi.org/10.14341/DM12802.
11. American Diabetes Association. 11. Chronic kidney disease and risk management: standards of medical care in diabetes-2022. Diabetes Care. 2022 1;45(Suppl 1):S175-S184. doi: https://doi.org/10.2337/dc22-S011.
12. Chaudhuri А, Ghanim H, Arora P. Improving residual risk of renal and cardiovascular outcomes in dkd: review of pathophysiology, mechanisms and evidence from recent trials. Diabetes Obes Metab. 2021. doi: https://doi.org/10.1111/dom.14601.
13. Naaman SC, Bakris GL. Slowing diabetic kidney disease progression: where do we stand today? Chronic kidney disease and type 2 diabetes. Arlington (VA): American Diabetes Association. 2021;P:28-40. doi: https://doi.org/10.2337/db20211-28.
14. Shunan F, Jiqing Y, Xue D. Effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on cardiovascular events in patients with diabetes and overt nephropathy: a meta-analysis of randomised controlled trials. J Renin Angiotensin Aldosterone Syst. 2018;19(4):1470320318803495. doi: https://doi.org/10.1177/1470320318803495.
15. Wang K, Hu J, Luo T, et al. Effects of angiotensin-converting enzyme inhibitors and angiotensin ii receptor blockers on all-cause mortality and renal outcomes in patients with diabetes and albuminuria: a systematic review and meta-analysis. Kidney Blood Press Res. 2018;43(3):768-779. doi: https://doi.org/10.1159/000489913.
16. Salukhov VV, Khalimov YS, Shustov SI, Popov ST. SGLT2 inhibitors and kidneys: mechanisms and main effects in diabetes mellitus patients. Diabetes Mellitus. 2020;23(5):475-491. (in Russ.). doi: https://doi.org/10.14341/DM12123.
17. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295-2306. doi: https://doi.org/10.1056/NEJMoa1811744.
18. Heerspink HJL, Stefansson BV, Chertow GM, et al. Rationale and protocol of the Dapagliflozin And Prevention of Adverse outcomes in Chronic Kidney Disease (DAPA-CKD) randomized controlled trial. Nephrol Dial Transplant. 2020;35(2):274-282. doi: https://doi.org/10.1093/ndt/gfz290.
19. Demidova TYu, Alekseeva YaG. Metabolic and hemodynamic effects of new SGLT2 inhibitor ipragliflozin in patients with type 2 diabetes. Atmosphere. Novosti kardiologii. 2020;1:38-47. (in Russ.). doi: https://doi.org/10.24411/2076-4189-2020-12203.
20. Kobalava ZhD, Medovchshikov VV, Yeshniyazov NB. Towards quadruple therapy for heart failure with reduced ejection fraction: DAPA-HF secondary analysis data. Russian Journal of Cardiology. 2020;25 (5):71-80. (in Russ.). doi: https://doi.org/10.15829/1560-4071-2020-3870.
21. Zelniker TA, Wiviott SD, Raz I. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. The Lancet. 2019;393(10166):31-9. doi: https://doi.org/10.1016/S0140-6736(18)32590-X.
22. Rаdholm K, Wu JH, Wong MG. Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular disease, death and safety outcomes in type 2 diabetes — a systematic review. Diabetes Research and Clinical Practice. 2018;140:118-128. doi: https://doi.org/10.1016/j.diabres.2018.03.027.
23. Dekkers CCJ, Gansevoort RT, Heerspink HJL. New diabetes therapies and diabetic kidney disease progression: the role of SGLT-2 inhibitors. Current Diabetes Reports. 2018;18(5):27. doi: https://doi.org/10.1007/s11892-018-0992-6.
24. Shamhalova MS, Sklyanik IA, Shestakova MV. Nephroprotective potential of glucagon-like peptide-1 receptor agonists. Diabetes Mellitus. 2020;23(1):56-64. (in Russ.). doi: https://doi.org/10.14341/DM12286.
25. Bauersachs J, Jaisser F, Toto R. Mineralocorticoid Receptor Activation and Mineralocorticoid Receptor Antagonist Treatment in Cardiac and Renal Diseases. Caramelli D, ed. Hypertension. 2015;65(2):257-263. doi:10.1161/HYPERTENSIONAHA.114.04488
26. Gomez-Sanchez E, Gomez-Sanchez CE. The multifaceted mineralocorticoid receptor. Compr Physiol. 2014;4(3):965-94. doi: https://doi.org/10.1002/cphy.c130044.
27. Nakamura T, Girerd S, Jaisser F, Barrera-Chimal J. Nonepithelial mineralocorticoid receptor activation as a determinant of kidney disease. Kidney Int Suppl. 2022;12(1):12-18. doi:10.1016/j.kisu.2021.11.004
28. Epstein M. Aldosterone and mineralocorticoid receptor signaling as determinants of cardiovascular and renal injury: from hans selye to the present. Am J Nephrol. 2021;52(3):209-216. doi: https://doi.org/10.1159/000515622.
29. Luther JM, Fogo AB. The role of mineralocorticoid receptor activation in kidney inflammation and fibrosis. Kidney Int. Sup. 2022;12:63-68. doi: https://doi.org/10.1016/j.kisu.2021.11.006.
30. Epstein M. Aldosterone and mineralocorticoid receptor signaling as determinants of cardiovascular and renal injury: an extraordinary paradigm shift. Kidney Int. Supl. 2022;12:1-6. doi: https://doi.org/10.1016/j.kisu.2021.11.007.
31. Rossing P. Clinical perspective — evolving evidence of mineralocorticoid receptor antagonists in patients with chronic kidney disease and type 2 diabetes. Kidney Int. Supl. 2022;12, 27-35. doi: https://doi.org/10.1016/j.kisu.2021.11.005.
32. Qiao Y-C, Chen Y-L, Pan Y-H, et al. Changes of transforming growth factor beta 1 in patients with type 2 diabetes and diabetic nephropathy: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore). 2017;96(15):e6583. doi: https://doi.org/10.1097/MD.0000000000006583.
33. Alicic RZ, Rooney MT, Tuttle KR. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin J Am Soc Nephrol. 2017;12(12):2032-2045. doi: https://doi.org/10.2215/CJN.11491116.
34. Quinkler M, Zehnder D, Eardley KS, et al. Increased expression of mineralocorticoid effector mechanisms in kidney biopsies of patients with heavy proteinuria. Circulation. 2005;112(10):1435-43. doi: https://doi.org/10.1161/CIRCULATIONAHA.105.539122.
35. Kolkhof P, Joseph A, Kintscher U. Nonsteroidal mineralocorticoid receptor antagonism for cardiovascular and renal disorders — New perspectives for combination therapy. Pharmacol Res. 2021;172:105859. doi: https://doi.org/10.1016/j.phrs.2021.105859.
36. Grune J, Beyhoff N, Smeir E. Selective mineralocorticoid receptor cofactor modulation as molecular basis for finerenone’s antifibrotic activity. Hypertension. 2018;71(4):599-608. doi: https://doi.org/10.1161/HYPERTENSIONAHA.117.10360.
37. Kolkhof P, Delbeck M, Kretschmer A Finerenone, a novel selective nonsteroidal mineralocorticoid receptor antagonist protects from rat cardiorenal injury. J Cardiovasc Pharmacol. 2014;64(1):69-78. doi: https://doi.org/10.1097/FJC.0000000000000091.
38. Staessen J, Lijnen P, Fagard R, et al. Rise in plasma concentration of aldosterone during long-term angiotensin II suppression. J Endocrinol. 1981;91(3):457-465. doi: https://doi.org/10.1677/joe.0.0910457.
39. Bomback AS, Klemmer PJ. The incidence and implications of aldosterone breakthrough. Nat Clin Pract Nephrol. 2007;3(9):486-492. doi: https://doi.org/10.1038/ncpneph0575.
40. Kintscher U, Bakris GL, Kolkhof P. Novel non‐steroidal mineralocorticoid receptor antagonists in cardiorenal disease. Br J Pharmacol. 2022;179(13):3220-3234. doi: https://doi.org/10.1111/bph.15747
41. Chung EY, Ruospo M, Natale P, et al. Aldosterone antagonists in addition to renin angiotensin system antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev. 2020;10(10):CD007004. doi: https://doi.org/10.1002/14651858.CD007004.pub4.
42. Bolignano D, Palmer SC, Navaneethan SD, Strippoli GFM. Aldosterone antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev. 2014;(4):CD007004. doi: https://doi.org/10.1002/14651858.CD007004.pub3.
43. Navaneethan SD, Nigwekar SU, Sehgal AR, Strippoli GF. Aldosterone antagonists for preventing the progression of chronic kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009;4(3):542-51. doi: https://doi.org/10.2215/CJN.04750908.
44. Currie G, Taylor AH, Fujita T, et al. Effect of mineralocorticoid receptor antagonists on proteinuria and progression of chronic kidney disease: a systematic review and meta-analysis. BMC Nephrol. 2016;17(1):127. doi: https://doi.org/10.1186/s12882-016-0337-0.
45. Bauersachs J, Butler J, Sandner P. Heart Failure. Handbook of Experimental Pharmacology. 2017;243. doi: https://doi.org/10.1007/164_2017_24.
46. Agarwal R, Filippatos G, Pitt B, et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J. 2022;43(6):474-484. https://doi.org/10.1093/eurheartj/ehab777.
47. Bakris GL, Agarwal R, Anker SD, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020;383(23):2219-2229. doi: 10.1056/NEJMoa2025845.
48. Pitt B, Filippatos G, Agarwal R, et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N Engl J Med. 2021;385(24):2252-2263. doi: 10.1056/NEJMoa2110956.
49. Chaudhuri А, Ghanim Н, Arora Р. Improving the residual risk of renal and cardiovascular outcomes in diabetic kidney disease: A review of pathophysiology, mechanisms, and evidence from recent trials. Diabetes Obes Metab. 2022;24(3):365-376. doi: https://doi.org/10.1111/dom.14601
50. Pitt B, Kober L, Ponikowski P. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur Heart J. 2013;34(31):2453-2463. doi: https://doi.org/10.1093/eurheartj/eht187.
Supplementary files
|
1. Figure 1. Processes underlying the development and progression of chronic kidney disease in type 2 diabetes mellitus, and groups of drugs that act on these pathological pathways as the main/primary mechanism of action. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(303KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Schematic representation of the pathophysiological pathway of inflammation and fibrosis in patients with chronic kidney disease and type 2 diabetes mellitus due to hyperactivation of mineralocorticoid receptors. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(233KB)
|
Indexing metadata ▾ |
Review
For citations:
Trubitsyna N.P., Zaitseva N.V., Severinа A.S., Shamkhalova M.S. Chronic kidney disease in patients with type 2 diabetes: new targets of medicine action. Diabetes mellitus. 2022;25(5):492-498. (In Russ.) https://doi.org/10.14341/DM12944

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).