Influence of type 2 sodium-glucose co-transporter inhibitors (dapagliflozin) on the indicators of total mortality in patients with type 2 diabetes (CARDIA-MOS study, Moscow)
https://doi.org/10.14341/DM12929
Abstract
BACKGROUND: The widespread use in clinical practice of drugs with cardio- and nephroprotective properties, in particular, sodium-glucose cotransporter type 2 inhibitors (SGLT2i), is based on the results of large-scale international randomized trials. Meanwhile, there are no data demonstrating the possibility of the influence of these drugs on mortality rates in real clinical practice in Russian patients. To study this issue, a CARDIA-MOS study was conducted on a population of patients with type 2 diabetes (T2DM) in Moscow.
AIM: To study the effect of SGLT2i on the total mortality of patients with T2DM in Moscow.
MATERIALS AND METHODS: To assess the frequency of different outcomes, two samples of patients were formed according to predetermined criteria: 1) patients who started therapy with SGLT2i (dapagliflozin) in 2017; 2) a control group of patients corresponding to the main group in terms of key indicators: age, duration of T2DM, presence of cardiovascular diseases, use of insulin therapy, HbA1c level.
RESULTS: Firstly, an analysis of the data of 499 patients who started treatment with dapagliflozin in 2017, as well as 499 patients in the control group (n = 998) was made. The baseline characteristics of the patients were generally comparable. Pre-study SBP and HbA1c were worse in the dapagliflozin group. The use of dapagliflozin was associated with a 39% reduction in the relative risk of death from all causes (RR 0.614, 95% CI 0.417–0.903, p = 0.013), led to a decrease in HbA1c levels by 0.8% (from 8.5 to 7.7%, p<0.001) for 48 months. observations. The safety profile of dapagliflozin was comparable to that of the control group
CONCLUSION: The use of dapagliflozin in the treatment of patients with T2DM can reduce overall mortality and improve glycemic control.
About the Authors
M. B. AntsiferovRussian Federation
Mikhail B. Antsiferov - MD, PhD, professor; eLibrary SPIN: 1035–4773.
Moscow
Competing Interests:
non
N. A. Demidov
Russian Federation
Nikolay A. Demidov - MD, PhD; eLibrary SPIN: 7715-4508.
7, Moskovskiy, microraion 3, Moscow
Competing Interests:
non
M. A. Balberova
Russian Federation
Maria A. Balberova - MD; eLibrary SPIN: 7263-5503.
Moscow
Competing Interests:
non
O. V. Lobanova
Russian Federation
Olga V. Lobanova – MD.
Moscow
Competing Interests:
non
I. G. Mudrikova
Russian Federation
Irina G. Mudrikova - MD; eLibrary SPIN: 8965-5850.
Moscow
Competing Interests:
non
D. G. Gusenbekova
Russian Federation
Dinara G. Gusenbekova - MD, PhD; eLibrary SPIN: 5332-2890.
Moscow
Competing Interests:
non
References
1. Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157(4):107843. doi: https://doi.org/10.1016/j.diabres.2019.107843
2. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88-98. doi: https://doi.org/10.1038/nrendo.2017.151
3. Davies MJ, D’Alessio DA, Fradkin J, et al. Management of hyperglycemia in type 2 diabetes, 2018. a consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018;41(12):2669-2701. doi: https://doi.org/10.2337/dci18-0033
4. Buse JB, Wexler DJ, Tsapas A, et al. 2019 Update to: Management of Hyperglycemia in type 2 diabetes, 2018. a consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020;43(2):487-493. doi: https://doi.org/10.2337/dci19-0066
5. Russian Association of Endocrinologists. Clinical guidelines. Type 2 Diabetes Mellitus in Adults. Moscow: Minzdrav RF; 2021. (In Russ.).
6. Kalashnikov VY, Vikulova OK, Zheleznyakova AV, et al. Epidemiology of cardiovascular diseases among patients with diabetes mellitus according to the federal diabetes register of the Russian Federation (2013–2016). Diabetes mellitus. 2019;22(2):105-114. (In Russ.). doi: https://doi.org/10.14341/DM10167
7. Pecoits-Filho R, Abensur H, Betônico CCR, et al. Interactions between kidney disease and diabetes: dangerous liaisons. Diabetol Metab Syndr. 2016;8(1):50. doi: https://doi.org/10.1186/s13098-016-0159-z
8. Fitchett D, Butler J, van de Borne P, et al. Effects of empagliflozin on risk for cardiovascular death and heart failure hospitalization across the spectrum of heart failure risk in the EMPA-REG OUTCOME® trial. Eur Heart J. 2018;39(5):363-370. doi: https://doi.org/10.1093/eurheartj/ehx511
9. Home P. Cardiovascular outcome trials of glucose-lowering medications: an update. Diabetologia. 2019;62(3):357-369. doi: https://doi.org/10.1007/s00125-018-4801-1
10. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and Cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644-657. doi: https://doi.org/10.1056/NEJMoa1611925
11. Usman MS, Siddiqi TJ, Memon MM, et al. Sodium-glucose co-transporter 2 inhibitors and cardiovascular outcomes: A systematic review and meta-analysis. Eur J Prev Cardiol. 2018;25(5):495-502. doi: https://doi.org/10.1177/2047487318755531
12. Zelniker TA, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393(10166):31-39. doi: https://doi.org/10.1016/S0140-6736(18)32590-X
13. Forxiga 10 mg film-coated tablets — Summary of Product Characteristics (SmPC) [Internet]. Available from: https://www.medicines.org.uk/emc/product/7607/smpc [cited April 18, 2022].
14. Rosenstock J, Vico M, Wei L, et al. Effects of dapagliflozin, an sglt2 inhibitor, on hba1c, body weight, and hypoglycemia risk in patients with type 2 diabetes inadequately controlled on pioglitazone monotherapy. Diabetes Care. 2012;35(7):1473-1478. doi: https://doi.org/10.2337/dc11-1693
15. Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347-357. doi: https://doi.org/10.1056/NEJMoa1812389
16. Bailey CJ, Gross JL, Hennicken D, et al. Dapagliflozin add-on to metformin in type 2 diabetes inadequately controlled with metformin: a randomized, double-blind, placebo-controlled 102-week trial. BMC Med. 2013;11(1):43. doi: https://doi.org/10.1186/1741-7015-11-43
17. Strojek K, Yoon KH, Hruba V, et al. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with glimepiride: a randomized, 24-week, double-blind, placebo-controlled trial. Diabetes, Obes Metab. 2011;13(10):928-938. doi: https://doi.org/10.1111/j.1463-1326.2011.01434.x
18. Ferrannini E, DeFronzo RA. Impact of glucose-lowering drugs on cardiovascular disease in type 2 diabetes. Eur Heart J. 2015;36(34):2288-2296. doi: https://doi.org/10.1093/eurheartj/ehv239
19. Lupsa BC, Inzucchi SE. Use of SGLT2 inhibitors in type 2 diabetes: weighing the risks and benefits. Diabetologia. 2018;61(10):2118-2125. doi: https://doi.org/10.1007/s00125-018-4663-6
20. Wilding J, Bailey C, Rigney U, et al. Dapagliflozin therapy for type 2 diabetes in primary care: Changes in HbA1c, weight and blood pressure over 2 years follow-up. Prim Care Diabetes. 2017;11(5):437-444. doi: https://doi.org/10.1016/j.pcd.2017.04.004
21. Brown RE, Gupta N, Aronson R. Effect of dapagliflozin on glycemic control, weight, and blood pressure in patients with type 2 diabetes attending a specialist endocrinology practice in Canada: A retrospective cohort analysis. Diabetes Technol Ther. 2017;19(11):685-691. doi: https://doi.org/10.1089/dia.2017.0134
22. Han E, Kim A, Lee SJ, et al. Characteristics of dapagliflozin responders: A longitudinal, prospective, nationwide dapagliflozin surveillance study in Korea. Diabetes Ther. 2018;9(4):1689-1701. doi: https://doi.org/10.1007/s13300-018-0470-9
23. Fadini GP, Zatti G, Baldi I, et al. Use and effectiveness of dapagliflozin in routine clinical practice: An Italian multicentre retrospective study. Diabetes, Obes Metab. 2018;20(7):1781-1786. doi: https://doi.org/10.1111/dom.13280
24. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117-2128. doi: https://doi.org/10.1056/NEJMoa1504720
25. Persson F, Nyström T, Jørgensen ME, et al. Dapagliflozin is associated with lower risk of cardiovascular events and all‐cause mortality in people with type 2 diabetes (CVD‐REAL Nordic) when compared with dipeptidyl peptidase‐4 inhibitor therapy: A multinational observationa. Diabetes, Obes Metab. 2018;20(2):344-351. doi: https://doi.org/10.1111/dom.13077
26. Bajaj HS, Raz I, Mosenzon O, et al. Cardiovascular and renal benefits of dapagliflozin in patients with short and long‐standing type 2 diabetes: Analysis from the DECLARE‐TIMI 58 trial. Diabetes, Obes Metab. 2020;22(7):1122-1131. doi: https://doi.org/10.1111/dom.14011
27. Mosenzon O, Wiviott SD, Cahn A, et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE–TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 2019;7(8):606-617. doi: https://doi.org/10.1016/S2213-8587(19)30180-9
Supplementary files
|
1. Figure 1. Mortality from all causes in groups. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(163KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Mortality from chronic heart failure in groups. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(162KB)
|
Indexing metadata ▾ |
|
3. Figure 3. All-cause mortality by presence of cardiovascular disease at the time of inclusion in the data analysis | |
Subject | ||
Type | Исследовательские инструменты | |
View
(132KB)
|
Indexing metadata ▾ |
|
4. Figure 4. All-cause mortality in cohorts categorized by confirmed CVD. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(232KB)
|
Indexing metadata ▾ |
|
5. Figure 5. Dynamics of glycated hemoglobin levels in groups over 48 months of observation | |
Subject | ||
Type | Исследовательские инструменты | |
View
(154KB)
|
Indexing metadata ▾ |
|
6. Figure 6. Dynamics of blood pressure indicators in groups for 48 months of observation. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(181KB)
|
Indexing metadata ▾ |
|
7. Figure 7. Dynamics of the calculated glomerular filtration rate in groups for 48 months of observation. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(149KB)
|
Indexing metadata ▾ |
|
8. Figure 8. Risks of various outcomes in general and in subgroups of patients | |
Subject | ||
Type | Исследовательские инструменты | |
View
(318KB)
|
Indexing metadata ▾ |
Review
For citations:
Antsiferov M.B., Demidov N.A., Balberova M.A., Lobanova O.V., Mudrikova I.G., Gusenbekova D.G. Influence of type 2 sodium-glucose co-transporter inhibitors (dapagliflozin) on the indicators of total mortality in patients with type 2 diabetes (CARDIA-MOS study, Moscow). Diabetes mellitus. 2022;25(5):439-448. https://doi.org/10.14341/DM12929

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).