Feсal microbiota transplantation in the format of complex therapy in obesive siblings: clinical case
https://doi.org/10.14341/DM12893
Abstract
Obesity and associated metabolic diseases are often accompanied by changes in the gut microbiota leading to metagenome gene diversity decrease. Fecal microbiota transplantation (FMT) is one of the most effective methods for correcting the intestinal microflora. FMT obtained from healthy donors has been proven to be an effective treatment of infections caused by Clostridium difficile. The use of FMT for correction of metabolic disorders is promising, however, data on its application is limited and has contradictory results. In our work, two patients (siblings) presented with obesity grade II and various types of diabetes mellitus (DM): the older brother (44 years old) with diabetes mellitus type 2 (DM 2), a younger brother (39 years old) with diabetes mellitus type 1 (DM 1). Both patients underwent FMT as part of complex antidiabetic therapy. During the course of treatment, a decrease in body weight was noted in both patients (4–5 kg for the first month of observation, then -1–2 kg per month). One year after FMT, a patient with type 2 diabetes showed a decrease in the severity of insulin resistance (IR), measured by the hyperinsulinemic euglycemic clamp test (initial M-index 2.42 mg/kg*min, after 1 year — 3.83 mg/kg* min) as well as the maintenance of satisfactory carbohydrate metabolism compensation against the diminishing the hypoglycemic therapy. In a patient with DM 1, no significant dynamics of carbohydrate exchange indices, including detected glycated hemoglobin (HbA1c), insulin dose and IR were during the observation period. Metagenomic sequencing of stool samples (n = 20) collected from both patients before and within 1 year after FMT showed no significant changes in the taxonomic profile of the microbiota at the level of microbial families. Metabolomic analysis of the composition of feces showed no directed changes in the composition of metabolites after the FMT procedure, the nature of changes within the samples from each patient during the entire study period was random. Thus, FMT had no effect on the course of DM1, but served as a starting point for weight loss and improvement glucose profile in DM2. However, convincing data confirming a causal correlation between FMT and improvement in the course of T2DM have not been obtained.
About the Authors
E. V. PokrovskayaRussian Federation
Elena V. Pokrovskaya, MD, research associate
11, Dm. Ulyanova street, 117036 Moscow
eLibrary SPIN: 8769-5010
E. S. Zhgun
Russian Federation
Elena S. Zhgun, PhD in Biology, senior research associate
Moscow
eLibrary SPIN: 7696-5117
E. A. Shestakova
Russian Federation
Ekaterina A. Shestakova, MD, PhD, leading research associate
Moscow
eLibrary SPIN: 1124-7600
I. A. Sklyanik
Russian Federation
Igor A. Sklyanik, MD, PhD, senior research associate
Moscow
eLibrary SPIN: 7081-8077
I. V. Fedushkina
Russian Federation
Irina V. Fedyushkina, PhD in Biology, research associate
Moscow
eLibrary SPIN: 8307-3721
E. I. Olekhnovich
Russian Federation
Evgeniy I. Olekhnovich, PhD in Biology, research associate
Moscow
D. N. Konanov
Russian Federation
Dmitry N. Konanov, junior research associate
Moscow
eLibrary SPIN: 8951-4992
D. A. Kardonsky
Russian Federation
Dmitry A. Kardonsky
Moscow
eLibrary SPIN: 7827-6565
Yu. V. Kislun
Russian Federation
Yuriy V. Kislun, PhD in Biology
Moscow
E. A. Sorokina
Russian Federation
Ekaterina Sorokina, student
Moscow
L. I. Zilberman
Russian Federation
Lubov I. Zilberman, MD, PhD, leading research associate
Moscow
eLibrary SPIN 4488-7724
N. V. Zaytseva
Russian Federation
Natalia V. Zaytseva, MD, PhD, leading research associate
Moscow
eLibrary SPIN: 8894-8815
E. N. Ilina
Russian Federation
Elena N. Ilina, PhD in Biology, Professor
Moscow
eLibrary SPIN: 6720-8230
V. M. Govorun
Russian Federation
Vadim M. Govorun, PhD in Biology
Moscow
eLibrary SPIN: 4187-7742
M. V. Shestakova
Russian Federation
Marina V. Shestakova, MD, PhD, Professor
Moscow
eLibrary SPIN: 7584-7015
References
1. Smith KB, Smith MS. Obesity Statistics. Prim Care Clin Off Pract. 2016;43(1):121-135. doi: https://doi.org/10.1016/j.pop.2015.10.001
2. Hanson RL, Imperatore G, Bennett PH, Knowler WC. Components of the “Metabolic Syndrome” and Incidence of Type 2 Diabetes. Diabetes. 2002;51(10):3120-3127. doi: https://doi.org/10.2337/diabetes.51.10.3120
3. Aydin Ö, Nieuwdorp M, Gerdes V. The Gut Microbiome as a Target for the Treatment of Type 2 Diabetes. Curr Diab Rep. 2018;18(8):55. doi: https://doi.org/10.1007/s11892-018-1020-6.
4. Harsch I, Konturek P. The Role of Gut Microbiota in Obesity and Type 2 and Type 1 Diabetes Mellitus: New Insights into “Old” Diseases. Med Sci. 2018;6(2):32. doi: https://doi.org/10.3390/medsci6020032
5. Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541-546. doi: https://doi.org/10.1038/nature12506
6. Duncan SH, Lobley GE, Holtrop G, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond). 2008;32(11):1720-1724. doi: https://doi.org/10.1038/ijo.2008.155
7. Karlsson F, Tremaroli V, Nielsen J, Bäckhed F. Assessing the human gut microbiota in metabolic diseases. Diabetes. 2013;62(10):3341-9. doi: https://doi.org/10.2337/db13-0844
8. de Groot PF, Frissen MN, de Clercq NC, Nieuwdorp M. Fecal microbiota transplantation in metabolic syndrome: History, present and future. Gut Microbes. 2017;8(3):253-267. doi: https://doi.org/10.1080/19490976.2017.1293224
9. Allin KH, Tremaroli V, Caesar R, et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia. 2018;61(4):810-820. doi: https://doi.org/10.1007/s00125-018-4550-1
10. Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci. 2004;101(44):15718-15723. doi: https://doi.org/10.1073/pnas.0407076101
11. Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913-916.e7. doi: https://doi.org/10.1053/j.gastro.2012.06.031
12. Hamilton MJ, Weingarden AR, Unno T, et al. High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria. Gut Microbes. 2013;4(2):125-135. doi: https://doi.org/10.4161/gmic.23571
13. Food & Drug Administration. Fecal Microbiota for Transplantation: Scientific and Regulatory Issues 309, May 2, 2013 [FR Doc. 2013–04232 Filed 2–22–13; 8:45 am]
14. Wang H, Lu Y, Yan Y, et al. Promising Treatment for Type 2 Diabetes: Fecal Microbiota Transplantation Reverses Insulin Resistance and Impaired Islets. Front Cell Infect Microbiol. 2020;9. doi: https://doi.org/10.3389/fcimb.2019.00455
15. Zhang PP, Li LL, Han X, et al. Fecal microbiota transplantation improves metabolism and gut microbiome composition in db/db mice. Acta Pharmacol Sin. 2020;41(5):678-685. doi: https://doi.org/10.1038/s41401-019-0330-9
16. Dedrick S, Sundaresh B, Huang Q, et al. The Role of Gut Microbiota and Environmental Factors in Type 1 Diabetes Pathogenesis. Front Endocrinol (Lausanne). 2020;11:78. doi: https://doi.org/10.3389/fendo.2020.00078
17. de Groot P, Nikolic T, Pellegrini S, et al. Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial. Gut. 2021;70(1):92-105. doi: https://doi.org/10.1136/gutjnl-2020-322630
18. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979;237(3):E214-223. doi: https://doi.org/10.1152/ajpendo.1979.237.3.E214
19. Majorov AJu. Sostojanie insulinorezistentnosti v jevoljucii saharnogo diabeta 2 tipa. Moscow: 2009. 217 p. (In Russ.).
20. Cammarota G, Ianiro G, Tilg H, et al. European FMT Working Group. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017;66(4):569-580. doi: https://doi.org/10.1136/gutjnl-2016-313017
21. Zhgun ES, Kislun YV, Kalachniuk TN, et al. Evaluation of metabolites levels in feces of patients with inflammatory bowel diseases. Biomeditsinskaya Khimiya. 2020;66(3):233-240. (In Russ.). doi: https://doi.org/10.18097/pbmc20206603233
22. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-2120. doi: https://doi.org/10.1093/bioinformatics/btu170
23. Bushnell B. BBMap: A Fast, Accurate, Splice-Aware Aligner. Lawrence Berkeley National Laboratory. LBNL Report #: LBNL-7065E. 2014. [Internet]. Available from: https://escholarship.org/uc/item/1h3515gn
24. Segata N, Waldron L, Ballarini A, et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods. 2012;9(8):811-814. doi: https://doi.org/10.1038/nmeth.2066
25. Truong DT, Franzosa EA, Tickle TL, et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2015;12(10):902-903. doi: https://doi.org/10.1038/nmeth.3589
26. Voigt AY, Costea PI, Kultima JR, et al. Temporal and technical variability of human gut metagenomes. Genome Biol. 2015;16(1):73. doi: https://doi.org/10.1186/s13059-015-0639-8
27. Oksanen J, Blanchet FG, Kindt R, et al. Package ‘vegan’. Community ecology package, version 2.9. 2013;1–295.
28. The R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2015. Available online at https://www.R-project.org/
29. Cerolsaletti K, Hao W, Greenbaum CJ. Genetics Coming of Age in Type 1 Diabetes. Diabetes Care. 2019;42(2):189-191. doi: https://doi.org/10.2337/dci18-0039
30. Trowsdale J, Knight JC. Major Histocompatibility Complex Genomics and Human Disease. Annu Rev Genomics Hum Genet. 2013;14(1):301-323. doi: https://doi.org/10.1146/annurev-genom-091212-153455
31. Redondo MJ, Oram RA, Steck AK. Genetic Risk Scores for Type 1 Diabetes Prediction and Diagnosis. Curr Diab Rep. 2017;17(12):129. doi: https://doi.org/10.1007/s11892-017-0961-5
32. Ellard S, Lango Allen H, De Franco E, et al. Improved genetic testing for monogenic diabetes using targeted nextgeneration sequencing. Diabetologia. 2013;56(9):1958-1963. doi: https://doi.org/10.1007/s00125-013-2962-5
33. Pociot F, Akolkar B, Concannon P, et al. Genetics of type 1 diabetes: what’s next?. Diabetes. 2010;59(7):1561-1571. doi: https://doi.org/10.2337/db10-0076
34. Taleb N, Polychronakos C. RFX6 is needed for the development and maintenance of the β-cell phenotype. Islets. 2011;3(5):291-293. doi: https://doi.org/10.4161/isl.3.5.15944
35. Clissold RL, Hamilton AJ, Hattersley AT, et al. HNF1B-associated renal and extra-renal disease-an expanding clinical spectrum. Nat Rev Nephrol. 2015;11(2):102-112. doi: https://doi.org/10.1038/nrneph.2014.232
36. Proenca I, Allegretti JR, Bernardo WM, et al. Fecal microbiota transplantation improves metabolic syndrome parameters: systematic review with meta-analysis based on randomized clinical trials. Nutr Res. 2020;83:1-14. doi: https://doi.org/10.1016/j.nutres.2020.06.018
37. Kootte RS, Levin E, Salojärvi J, et al. Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metab. 2017;26(4):611-619.e6. doi: https://doi.org/10.1016/j.cmet.2017.09.008
38. Yu EW, Gao L, Stastka P, et al. Fecal microbiota transplantation for the improvement of metabolism in obesity: The FMT-TRIM doubleblind placebo-controlled pilot trial. PLOS Med. 2020;17(3):e1003051. doi: https://doi.org/10.1371/journal.pmed.1003051
39. Leong KSW, Jayasinghe TN, Wilson BC, et al. Effects of Fecal Microbiome Transfer in Adolescents With Obesity. JAMA Netw Open. 2020;3(12):e2030415. doi: https://doi.org/10.1001/jamanetworkopen.2020.30415
40. Allegretti JR, Kassam Z, Mullish BH, et al. Effects of Fecal Microbiota Transplantation With Oral Capsules in Obese Patients. Clin Gastroenterol Hepatol. 2020;18(4):855-863.e2. doi: https://doi.org/10.1016/j.cgh.2019.07.006
Supplementary files
|
1. Figure 1. Dynamics of changes in anthropometric parameters in patients: A - dynamics of changes in body weight; B - dynamics of changes in waist circumference. The arrow in the figure indicates the intervention point. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(287KB)
|
Indexing metadata ▾ |
|
2. Figure 2. Dynamics of hypoglycemic therapy in patients after fecal microbiota transplantation. The arrow in the figure indicates the intervention point. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(113KB)
|
Indexing metadata ▾ |
![]() |
3. Приложение. Дополнительные материалы. | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(1MB)
|
Indexing metadata ▾ |
Review
For citations:
Pokrovskaya E.V., Zhgun E.S., Shestakova E.A., Sklyanik I.A., Fedushkina I.V., Olekhnovich E.I., Konanov D.N., Kardonsky D.A., Kislun Yu.V., Sorokina E.A., Zilberman L.I., Zaytseva N.V., Ilina E.N., Govorun V.M., Shestakova M.V. Feсal microbiota transplantation in the format of complex therapy in obesive siblings: clinical case. Diabetes mellitus. 2022;25(4):405-417. (In Russ.) https://doi.org/10.14341/DM12893

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).