Preview

Diabetes mellitus

Advanced search

The role of bile acids and intestinal microbiota in metabolic transformations after gastric bypass surgery

https://doi.org/10.14341/DM12880

Abstract

Today, the positive impact of bariatric surgery on the course of type 2 diabetes mellitus has been studied in detail. At the same time, not only the effect of direct weight loss and the incretin theory, but also other mechanisms for normalizing glycemia are being actively discussed. Thus, special attention is paid to the metabolism of bile acids and their influence on various indicators of homeostasis, including carbohydrate metabolism. After bariatric interventions of the bypass type, the passage of bile through the gastrointestinal tract, as well as its interaction with food masses, changes significantly, which served as the basis for studying this phenomenon. The information accumulated to date indicates enormous changes occurring not only in the anatomy, but also in the biology of the gastrointestinal tract after bariatric bypass surgery. The composition of the intestinal microbiota and the composition of bile masses undergo significant changes. Most of the works available today suggest that these changes are the cause of a number of metabolic rearrangements, and directly affect carbohydrate metabolism. This issue is still under study and accumulation of the necessary information, but today it can be stated with confidence that the role of bile passage, bile acid circulation and restructuring of the intestinal microbiota in the regulation of carbohydrate metabolism and energy balance after bariatric bypass surgery is of extreme importance.

About the Authors

A. M. Mkrtumyan
Evdokimov Moscow State University of Medicine and Dentistry
Russian Federation

Ashot M. Mkrtumyan - MD, PhD, Professor; eLibrary SPIN: 1980-8700.

Moscow


Competing Interests:

none



I. Y. Yakovenko
Evdokimov Moscow State University of Medicine and Dentistry
Russian Federation

Igor Y. Yakovenko - MD, PhD, Professor; eLibrary SPIN: 3111-8971.

Moscow


Competing Interests:

none



A. A. Botov
Central Union Hospital of Russian Federation; Evdokimov Moscow State University of Medicine and Dentistry
Russian Federation

Aleksey A. Botov - MD; eLibrary SPIN: 7913-2170.

39, Losinoostrovskaya St., Moscow, 107150


Competing Interests:

none



T. U. Samratov
Evdokimov Moscow State University of Medicine and Dentistry
Russian Federation

Timur U. Samratov - MD, PhD, associate professor; eLibrary SPIN: 5864-9418.

Moscow


Competing Interests:

none



References

1. Dawson PA, Hubbert M, Haywood J, et al. The heteromeric organic solute transporter alpha-beta, ostalpha-ostbeta, is an ileal basolateral bile acid transporter. J Biol Chem. 2005;280:960-968.

2. Kir S, Beddow SA, Samuel VT, et al. FGF19 as a Postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science (80- ). 2011;331(6024):1621-1624. doi: https://doi.org/10.1126/science.1198363

3. Cariou B, van Harmelen K, Duran-Sandoval D, et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem. 2006;281(16):11039-11049. doi: https://doi.org/10.1074/jbc.M510258200

4. Ma K. Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest. 2006;116(4):1102-1109. doi: https://doi.org/10.1172/JCI25604

5. Wu T, Bound MJ, Standfield SD, et al. Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans. Diabetes, Obes Metab. 2013;15(5):474-477. doi: https://doi.org/10.1111/dom.12043

6. Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10(3):167-177. doi: https://doi.org/10.1016/j.cmet.2009.08.001

7. Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484-489. doi: https://doi.org/10.1038/nature04330

8. Pols TWH, Noriega LG, Nomura M, et al. The bile acid membrane receptor TGR5: A valuable metabolic target. Dig Dis. 2011;29(1):37-44. doi: https://doi.org/10.1159/000324126

9. Fisette A, Poursharifi P, Oikonomopoulou K, et al. Paradoxical glucose-sensitizing yet proinflammatory effects of acute asp administration in mice. Mediators Inflamm. 2013;2013:1-9. doi: https://doi.org/10.1155/2013/713284

10. Germinario R, Sniderman AD, Manuel S, et al. Coordinate regulation of triacylglycerol synthesis and glucose transport by acylation-stimulating protein. Metabolism. 1993;42(5):574-580. doi: https://doi.org/10.1016/0026-0495(93)90215-A

11. Severin ES, Alejnikova TL, Osipov EV, Silaeva SA. B63 Biologicheskaya himiya. Moscow: OOO «Medicinskoe informacionnoe agentstvo», 2008. (In Russ.).

12. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65. doi: https://doi.org/10.1038/nature08821

13. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375(24):2369-2379. doi: https://doi.org/10.1056/NEJMra1600266

14. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-1031. doi: https://doi.org/10.1038/nature05414

15. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480-484. doi: https://doi.org/10.1038/nature07540

16. Larsen N, Vogensen FK, van den Berg FWJ, et al. Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLoS One. 2010;5(2):e9085. doi: https://doi.org/10.1371/journal.pone.0009085

17. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55-60. doi: https://doi.org/10.1038/nature11450

18. Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913-916.e7. doi: https://doi.org/10.1053/j.gastro.2012.06.031

19. Palleja A, Kashani A, Allin KH, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med. 2016;8(1):67. doi: https://doi.org/10.1186/s13073-016-0312-1

20. Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci. 2009;106(7):2365-2370. doi: https://doi.org/10.1073/pnas.0812600106

21. Anhê FF, Varin TV, Schertzer JD, Marette A. The gut microbiota as a mediator of metabolic benefits after bariatric surgery. Can J Diabetes. 2017;41(4):439-447. doi: https://doi.org/10.1016/j.jcjd.2017.02.002

22. Graessler J, Qin Y, Zhong H, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J. 2013;13(6):514-522. doi: https://doi.org/10.1038/tpj.2012.43

23. Jørgensen NB, Dirksen C, Bojsen-Møller KN, et al. Improvements in glucose metabolism early after gastric bypass surgery are not explained by increases in total bile acids and fibroblast growth factor 19 concentrations. J Clin Endocrinol Metab. 2015;100(3):E396-E406. doi: https://doi.org/10.1210/jc.2014-1658

24. Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228-238. doi: https://doi.org/10.1016/j.cmet.2015.07.009

25. Damms-Machado A, Mitra S, Schollenberger AE, et al. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. Biomed Res Int. 2015;2015:1-12. doi: https://doi.org/10.1155/2015/806248

26. Kong L-C, Tap J, Aron-Wisnewsky J, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr. 2013;98(1):16-24. doi: https://doi.org/10.3945/ajcn.113.058743

27. Liou AP, Paziuk M, Luevano J-M, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5(178). doi: https://doi.org/10.1126/scitranslmed.3005687

28. Guo Y, Liu C-Q, Shan C-X, et al. Gut microbiota after Roux-en-Y gastric bypass and sleeve gastrectomy in a diabetic rat model: Increased diversity and associations of discriminant genera with metabolic changes. Diabetes Metab Res Rev. 2017;33(3):e2857. doi: https://doi.org/10.1002/dmrr.2857

29. Inagaki T, Moschetta A, Lee Y-K, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci. 2006;103(10):3920-3925. doi: https://doi.org/10.1073/pnas.0509592103

30. Grinevich VB, Sas EI. Fiziologicheskie effekty zhelchnyh kislot. RMZH. Medicinskoe obozrenie. 2017;25(2):87-91. (In Russ.).

31. Ahlin S, Cefalo C, Bondia-Pons I, et al. Bile acid changes after metabolic surgery are linked to improvement in insulin sensitivity. Br J Surg. 2019;106(9):1178-1186. doi: https://doi.org/10.1002/bjs.11208

32. Browning MG, Pessoa BM, Khoraki J, Campos GM. Changes in bile acid metabolism, transport, and signaling as central drivers for metabolic improvements after bariatric surgery. Curr Obes Rep. 2019;8(2):175-184. doi: https://doi.org/10.1007/s13679-019-00334-4

33. Tabasi M, Ashrafian F, Khezerloo JK, et al. Changes in gut microbiota and hormones after bariatric surgery: a Bench-to-Bedside review. Obes Surg. 2019;29(5):1663-1674. doi: https://doi.org/10.1007/s11695-019-03779-7

34. Chaudhari SN, Luo JN, Harris DA, et al. A microbial metabolite remodels the gut-liver axis following bariatric surgery. Cell Host Microbe. 2021;29(3):408-424.e7. doi: https://doi.org/10.1016/j.chom.2020.12.004

35. Steinert RE, Peterli R, Keller S, et al. Bile acids and gut peptide secretion after bariatric surgery: A 1-year prospective randomized pilot trial. Obesity. 2013;21(12):E660-E668. doi: https://doi.org/10.1002/oby.20522

36. Xu G, Song M. Recent advances in the mechanisms underlying the beneficial effects of bariatric and metabolic surgery. Surg Obes Relat Dis. 2021;17(1):231-238. doi: https://doi.org/10.1016/j.soard.2020.08.028

37. Flynn CR, Albaugh VL, Cai S, et al. Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery. Nat Commun. 2015;6(1):7715. doi: https://doi.org/10.1038/ncomms8715


Supplementary files

Review

For citations:


Mkrtumyan A.M., Yakovenko I.Y., Botov A.A., Samratov T.U. The role of bile acids and intestinal microbiota in metabolic transformations after gastric bypass surgery. Diabetes mellitus. 2022;25(5):499-503. (In Russ.) https://doi.org/10.14341/DM12880

Views: 839


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)