Preview

Diabetes mellitus

Advanced search

The role of pioglitazone in the fight against insulin resistance, atherosclerosis, cardiovascular disease, and non-alcoholic fatty liver disease

https://doi.org/10.14341/DM12859

Abstract

Modern strategies for the treatment of type 2 diabetes mellitus involve the use of pathogenetically based approaches aimed at achieving optimal glycemic control and its long-term retention. Timely and rational use of 9 classes of hypoglycemic drugs, including as part of combination therapy, makes it possible to achieve significant success in diabetes therapy. One of the fundamental principles in the treatment of type 2 diabetes mellitus is the effect on insulin resistance. For this purpose, two groups of drugs are used: biguanides and thiazolidinediones (glitazones). The action of glitazones is directly related to an increase in the sensitivity of insulin-dependent tissues to insulin and a pronounced decrease in hyperinsulinemia in patients with type 2 diabetes. Of particular interest are the pathways of insulin signal transduction, the mechanisms of insulin resistance, and the possibilities of pathogenetic therapy with thiazolidinediones. Pioglitazone is currently the only available member of the thiazolidinedione class in the world, allowing to expand the management of diabetes mellitus by reducing insulin resistance in muscle and adipose tissue and glucose production by the liver. Its use can have a number of pleiotropic effects, including on cardiovascular diseases and non-alcoholic fatty liver disease, which expands the priorities for choosing hypoglycemic therapy in patients with type 2 diabetes at various stages of therapy.

About the Authors

N. A. Petunina
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Nina A. Petunina - MD, PhD, Professor; eLibrary SPIN: 9784-3616

8/2 Trubetskaya, 119991 Moscow


Competing Interests:

none



E. V. Goncharova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Ekaterina V. Goncharova - MD, PhD, associate professor; eLibrary SPIN: 7148-4669.

Moscow


Competing Interests:

none



I. A. Kuzina
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Irina A. Kuzina - MD, assistant; eLibrary SPIN: 9008-5886.

Moscow


Competing Interests:

none



L. V. Nedosugova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Ludmila V. Nedosugova - MD, PhD, professor; eLibrary SPIN: 1853-0215.

Moscow


Competing Interests:

none



N. S. Martirosyan
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Narine S. Martirosyan - MD, PhD, associate professor; eLibrary SPIN: 1893-8030.

Moscow


Competing Interests:

none



M. Е. Теlnova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Milena Е. Теlnova - MD, PhD, associate professor; eLibrary SPIN: 1007-4617.

Moscow


Competing Interests:

none



References

1. Banting FG, Best CH, Collip JB, et al. Pancreatic Extracts in the Treatment of Diabetes Mellitus. Can Med Assoc J. 1922;12(3):141-146.

2. Sanger F. Chemistry of insulin; determination of the structure of insulin opens the way to greater understanding of life processes. Science. 1959;129(3359):1340-1344. doi: https://doi.org/10.1126/science.129.3359.1340

3. Freychet P, Roth J, Neville DM Jr. Insulin receptors in the liver: specific binding of (125 I) insulin to the plasma membrane and its relation to insulin bioactivity. Proc Natl Acad Sci U S A. 1971;68(8):1833-1837. doi: https://doi.org/10.1073/pnas.68.8.1833

4. Cuatrecasas P. Insulin-Receptor Interactions in Adipose Tissue Cells: Direct Measurement and Properties. Proc Natl Acad Sci. 1971;68(6):1264-1268. doi: https://doi.org/10.1073/pnas.68.6.1264

5. Ebina Y, Ellis L, Jarnagin K, et al. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell. 1985;40(4):747-758. doi: https://doi.org/10.1016/0092-8674(85)90334-4

6. Ullrich A, Bell JR, Chen EY, et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature. 1985;313(6005):756-761. doi: https://doi.org/10.1038/313756a0

7. Kasuga M. Structure and function of the insulin receptor-a personal perspective. Proc Jpn Acad Ser B Phys Biol Sci. 2019;95(10):581-589. doi: https://doi.org/10.2183/pjab.95.039

8. Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014;6(1):a009191-a009191. doi: https://doi.org/10.1101/cshperspect.a009191

9. Sun X.J., Rothenberg P., Kahn C.R., et al.. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature. 1991;352(6330):73-77. doi: https://doi.org/10.1038/352073a0

10. Haeusler RA, McGraw TE, Accili D. Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol. 2018;19(1):31-44. doi: https://doi.org/10.1038/nrm.2017.89

11. Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev. 2018;98(4):2133-2223. doi: https://doi.org/10.1152/physrev.00063.2017

12. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-419. doi: https://doi.org/10.1007/BF00280883

13. Goncharova EV, Petunina NA, Bokeriia OL, Arkhipkin AA. Metabolic syndrome and metabolically healthy obesity in young men. Consilium Medicum. 2016;18(8):64-67. (In Russ.). doi: https://doi.org/10.26442/2075-1753_2016.8.64-67

14. Tang Q, Li X, Song P, Xu L. Optimal cut-off values for the homeostasis model assessment of insulin resistance (HOMA-IR) and pre-diabetes screening: Developments in research and prospects for the future. Drug Discov Ther. 2015;9(6):380-385. doi: https://doi.org/10.5582/ddt.2015.01207

15. Kolterman OG, Gray RS, Griffin J, et al. Receptor and postreceptor defects contribute to the insulin resistance in noninsulin-dependent diabetes mellitus. J Clin Invest. 1981;68(4):957-969. doi: https://doi.org/10.1172/JCI110350

16. Olefsky JM, Kolterman OG, Scarlett JA. Insulin action and resistance in obesity and noninsulin-dependent type II diabetes mellitus. Am J Physiol Metab. 1982;243(1):E15-E30. doi: https://doi.org/10.1152/ajpendo.1982.243.1.E15

17. Fazakerley DJ, Krycer JR, Kearney AL, et al. Muscle and adipose tissue insulin resistance: malady without mechanism? J Lipid Res. 2019;60(10):1720-1732. doi: https://doi.org/10.1194/jlr.R087510

18. Cusi K, Maezono K, Osman A, et al. Insulin resistance differentially affects the PI 3-kinase– and MAP kinase–mediated signaling in human muscle. J Clin Invest. 2000;105(3):311-320. doi: https://doi.org/10.1172/JCI7535

19. Melvin A, O’Rahilly S, Savage D. Genetic syndromes of severe insulin resistance. Curr Opin Genet Dev. 2018;50(3):60-67. doi: https://doi.org/10.1016/j.gde.2018.02.002

20. Koo SH, Flechner L, Qi L, et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature. 2005;437(7062):1109-1111. doi: https://doi.org/10.1038/nature03967

21. Brown MS, Goldstein JL. Selective versus Total Insulin Resistance: A Pathogenic Paradox. Cell Metab. 2008;7(2):95-96. doi: https://doi.org/10.1016/j.cmet.2007.12.009

22. Shimomura I, Matsuda M, Hammer RE, et al. Decreased IRS-2 and Increased SREBP-1c Lead to Mixed Insulin Resistance and Sensitivity in Livers of Lipodystrophic and ob/ob Mice. Mol Cell. 2000;6(1):77-86. doi: https://doi.org/10.1016/S1097-2765(05)00010-9

23. Bi P, Kuang S. Notch signaling as a novel regulator of metabolism. Trends Endocrinol Metab. 2015;26(5):248-255. doi: https://doi.org/10.1016/j.tem.2015.02.006

24. Pajvani UB, Shawber CJ, Samuel VT, et al. Inhibition of Notch signaling ameliorates insulin resistance in a FoxO1-dependent manner. Nat Med. 2011;17(8):961-967. doi: https://doi.org/10.1038/nm.2378

25. Pajvani UB, Qiang L, Kangsamaksin T, et al. Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTorc1 stability. Nat Med. 2013;19(8):1054-1060. doi: https://doi.org/10.1038/nm.3259

26. Sohda T, Mizuno K, Imamiya E, et al. Studies on antidiabetic agents. II. Synthesis of 5-[4-(1-methylcyclohexylmethoxy)-benzyl]thiazolidine-2,4-dione (ADD-3878) and its derivatives. Chem Pharm Bull (Tokyo). 1982;30(10):3580-3600. doi: https://doi.org/ 10.1248/cpb.30.3580

27. Fujita T, Sugiyama Y, Taketomi S, et al. Reduction of insulin resistance in obese and/or diabetic animals by 5-[4-(1-methylcyclohexylmethoxy)benzyl]-thiazolidine-2,4-dione (ADD-3878, U-63,287, ciglitazone), a new antidiabetic agent. Diabetes. 1983;32(9):804-810. doi: https://doi.org/10.2337/diab.32.9.804

28. Fujiwara T, Yoshioka S, Yoshioka T, et al. Characterization of new oral antidiabetic agent CS-045. Studies in KK and ob/ob mice and Zucker fatty rats. Diabetes. 1988;37(11):1549-1558. doi: https://doi.org/10.2337/diab.37.11.1549

29. Sohda T, Momose Y, Meguro K, et al. Studies on antidiabetic agents. Synthesis and hypoglycemic activity of 5-[4-(pyridylalkoxy)benzyl]-2,4-thiazolidinediones. Arzneimittelforschung. 1990;40(1):37-42.

30. Lebovitz HE. Insulin resistance and its treatment by thiazolidinediones. Recent Prog Horm Res. 2001;56(1):265-294. doi: https://doi.org/10.1210/rp.56.1.265

31. Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARγ. Annu Rev Biochem. 2008;77(1):289-312. doi: https://doi.org/10.1146/annurev.biochem.77.061307.091829

32. Olefsky J, Saltiel A. PPARγ and the treatment of insulin resistance. Trends Endocrinol Metab. 2000;11(9):362-368. doi: https://doi.org/10.1016/S1043-2760(00)00306-4

33. Chan LSA, Wells RA. Cross-Talk between PPARs and the Partners of RXR: A Molecular Perspective. PPAR Res. 2009;2009(9):1-9. doi: https://doi.org/10.1155/2009/925309

34. Tan CK, Zhuang Y, Wahli W. Synthetic and natural Peroxisome Proliferator-Activated Receptor (PPAR) agonists as candidates for the therapy of the metabolic syndrome. Expert Opin Ther Targets. 2017;21(3):333-348. doi: https://doi.org/10.1080/14728222.2017.1280467

35. Usuda D, Kanda T. Peroxisome proliferator-activated receptors for hypertension. World J Cardiol. 2014;6(8):744-754. doi: https://doi.org/10.4330/wjc.v6.i8.744

36. Azhar S. Peroxisome proliferator-activated receptors, metabolic syndrome and cardiovascular disease. Future Cardiol. 2010;6(5):657-691. doi: https://doi.org/10.2217/fca.10.86

37. Ahmadian M, Suh JM, Hah N, et al. PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med. 2013;19(5):557-566. doi: https://doi.org/10.1038/nm.3159

38. Ptasinska A, Wang S, Zhang J, et al. Nitric oxide activation of peroxisome proliferator-activated receptor gamma through a p38 MAPK signaling pathway. FASEB J. 2007;21(3):950-961. doi: https://doi.org/10.1096/fj.06-6822com

39. Kliewer SA, Sundseth SS, Jones SA, et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc Natl Acad Sci. 1997;94(9):4318-4323. doi: https://doi.org/10.1073/pnas.94.9.4318

40. Zhang C, Zhang Y, Zhang C, et al. Pioglitazone increases VEGFR3 expression and promotes activation of M2 macrophages via the peroxisome proliferator-activated receptor γ. Mol Med Rep. 2019;19(4):2740-2748. doi: https://doi.org/10.3892/mmr.2019.9945

41. Buchanan TA, Xiang AH, Peters RK, et al. Preservation of Pancreatic β-Cell Function and Prevention of Type 2 Diabetes by Pharmacological Treatment of Insulin Resistance in High-Risk Hispanic Women. Diabetes. 2002;51(9):2796-2803. doi: https://doi.org/10.2337/diabetes.51.9.2796

42. Xiang AH, Peters RK, Kjos SL, et al. Effect of pioglitazone on pancreatic β-cell function and diabetes risk in hispanic women with prior gestational diabetes. Diabetes. 2006;55(2):517-522. doi: https://doi.org/10.2337/diabetes.55.02.06.db05-1066

43. Dormandy JA, Betteridge DJ, Schernthaner G, et al. Impact of peripheral arterial disease in patients with diabetes — results from PROactive (PROactive 11). Atherosclerosis. 2009;202(1):272-281. doi: https://doi.org/10.1016/j.atherosclerosis.2008.03.002

44. Erdmann E, Dormandy JA, Charbonnel B, et al. The effect of pioglitazone on recurrent myocardial infarction in 2,445 patients with type 2 diabetes and previous myocardial infarction. J Am Coll Cardiol. 2007;49(17):1772-1780. doi: https://doi.org/10.1016/j.jacc.2006.12.048

45. Wilcox R, Bousser M-G, Betteridge DJ, et al. PROspective pioglitazone clinical trial in macrovascular events 04). Stroke. 2007;38(3):865-873. doi: https://doi.org/10.1161/01.STR.0000257974.06317.49

46. de Jong M, van der Worp HB, van der Graaf Y, et al. Pioglitazone and the secondary prevention of cardiovascular disease. A meta-analysis of randomized-controlled trials. Cardiovasc Diabetol. 2017;16(1):134. doi: https://doi.org/10.1186/s12933-017-0617-4

47. DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia. 2010;53(7):1270-1287. doi: https://doi.org/10.1007/s00125-010-1684-1

48. Inzucchi SE, Furie KL. The IRIS (Insulin Resistance Intervention after Stroke) trial: A new perspective on pioglitazone. J Diabetes. 2016 Sep;8(5):607-9. doi: 10.1111/1753-0407.12399. Epub 2016 Jun 8. PMID: 27125599.

49. Yaghi S, Furie KL, Viscoli CM, et al. Pioglitazone prevents stroke in patients with a recent transient ischemic attack or ischemic stroke. Circulation. 2018;137(5):455-463. doi: https://doi.org/10.1161/CIRCULATIONAHA.117.030458

50. Kernan WN, Viscoli CM, Furie KL, et al. Pioglitazone after Ischemic Stroke or Transient Ischemic Attack. N Engl J Med. 2016;374(14):1321-1331. doi: https://doi.org/10.1056/NEJMoa1506930

51. Tanaka R, Yamashiro K, Okuma Y, et al. Effects of pioglitazone for secondary stroke prevention in patients with impaired glucose tolerance and newly diagnosed diabetes: the J-SPIRIT study. J Atheroscler Thromb. 2015;22(12):1305-1316. doi: https://doi.org/10.5551/jat.30007

52. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279-1289. doi: https://doi.org/10.1016/S0140-6736(05)67528-9

53. Takagi T, Okura H, Kobayashi Y, et al. A prospective, multicenter, randomized trial to assess efficacy of pioglitazone on in-stent neointimal suppression in type 2 diabetes. JACC Cardiovasc Interv. 2009;2(6):524-531. doi: https://doi.org/10.1016/j.jcin.2009.04.007

54. Berlie HD, Kalus JS, Jaber LA. Thiazolidinediones and the risk of edema: A meta-analysis. Diabetes Res Clin Pract. 2007;76(2):279-289. doi: https://doi.org/10.1016/j.diabres.2006.09.010

55. Basu A, Jensen MD, McCann F, et al. Effects of pioglitazone versus glipizide on body fat distribution, body water content, and hemodynamics in type 2 diabetes. Diabetes Care. 2006;29(3):510-514. doi: https://doi.org/10.2337/diacare.29.03.06.dc05-2004

56. DeFronzo RA, Inzucchi S, Abdul-Ghani M, et al. Pioglitazone: The forgotten, cost-effective cardioprotective drug for type 2 diabetes. Diab Vasc Dis Res. 2019;16(2):133-143. doi: https://doi.org/10.1177/1479164118825376

57. Hurren KM, Dunham MW. Are thiazolidinediones a preferred drug treatment for type 2 diabetes? Expert Opin Pharmacother. 2021;22(2):131-133. doi: https://doi.org/10.1080/14656566.2020.1853100

58. Glass CK, Saijo K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol. 2010;10(5):365-376. doi: https://doi.org/10.1038/nri2748

59. Li AC, Brown KK, Silvestre MJ, et al. Peroxisome proliferator–activated receptor γ ligands inhibit development of atherosclerosis in LDL receptor–deficient mice. J Clin Invest. 2000;106(4):523-531. doi: https://doi.org/10.1172/JCI10370

60. Law RE, Goetze S, Xi X-P, et al. Expression and Function of PPARγ in Rat and Human Vascular Smooth Muscle Cells. Circulation. 2000;101(11):1311-1318. doi: https://doi.org/10.1161/01.CIR.101.11.1311

61. Sugawara A, Takeuchi K, Uruno A, et al. Transcriptional suppression of type 1 angiotensin ii receptor gene expression by peroxisome proliferator-activated receptor-γ in vascular smooth muscle cells*. Endocrinology. 2001;142(7):3125-3134. doi: https://doi.org/10.1210/endo.142.7.8272

62. Hirano M, Nakamura T, Kitta Y, et al. Rapid improvement of carotid plaque echogenicity within 1 month of pioglitazone treatment in patients with acute coronary syndrome. Atherosclerosis. 2009;203(2):483-488. doi: https://doi.org/10.1016/j.atherosclerosis.2008.07.023

63. Mazzone T, Meyer PM, Feinstein SB, et al. Effect of Pioglitazone Compared With Glimepiride on Carotid Intima-Media Thickness in Type 2 Diabetes: A Randomized Trial. JAMA. 2006;296(21):2572-2581. doi: https://doi.org/10.1001/jama.296.21.joc60158

64. Nissen SE, Nicholls SJ, Wolski K, et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA. 2008;299(13):1561-1573. doi: https://doi.org/10.1001/jama.299.13.1561

65. Schneider CA, Ferrannini E, Defronzo R, et al. Effect of pioglitazone on cardiovascular outcome in diabetes and chronic kidney disease. J Am Soc Nephrol. 2008;19(1):182-187. doi: https://doi.org/10.1681/ASN.2007060678

66. Schernthaner G, Matthews DR, Charbonnel B, et al. Efficacy and safety of pioglitazone versus metformin in patients with type 2 diabetes mellitus: a double-blind, randomized trial. J Clin Endocrinol Metab. 2004;89(12):6068-6076. doi: https://doi.org/10.1210/jc.2003-030861

67. Davies MJ, Aroda VR, Collins BS, et al. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2022;142(7):3125-3134. doi: https://doi.org/10.1007/s00125-022-05787-2

68. Davies MJ, Aroda VR, Collins BS, et al. EASL–EASD–EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64(6):1388-1402. doi: https://doi.org/10.1016/j.jhep.2015.11.004

69. Cusi K, Isaacs S, Barb D, et al. American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings. Endocr Pract. 2022;28(5):528-562. doi: https://doi.org/10.1016/j.eprac.2022.03.010

70. Bugianesi E, Vanni E, Marchesini G. NASH and the risk of cirrhosis and hepatocellular carcinoma in type 2 diabetes. Curr Diab Rep. 2007;7(3):175-180. doi: https://doi.org/10.1007/s11892-007-0029-z

71. Van Wagner LB, Rinella ME. The role of insulin-sensitizing agents in the treatment of nonalcoholic steatohepatitis. Therap Adv Gastroenterol. 2011;4(4):249-263. doi: https://doi.org/10.1177/1756283X11403809

72. Belfort R, Harrison SA, Brown K, et al. A Placebo-Controlled Trial of Pioglitazone in Subjects with Nonalcoholic Steatohepatitis. N Engl J Med. 2006;355(22):2297-2307. doi: https://doi.org/10.1056/NEJMoa060326

73. Sanyal AJ, Chalasani N, Kowdley KV., et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362(18):1675-1685. doi: https://doi.org/10.1056/NEJMoa0907929

74. Cusi K, Orsak B, Bril F, et al. Long-term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus. Ann Intern Med. 2016;165(5):305-315. doi: https://doi.org/10.7326/M15-1774

75. Rakoski MO, Singal AG, Rogers MAM, Conjeevaram H. Meta-analysis: insulin sensitizers for the treatment of non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2010;32(10):1211-1221. doi: https://doi.org/10.1111/j.1365-2036.2010.04467.x

76. Mahady SE, Webster AC, Walker S, et al. The role of thiazolidinediones in non-alcoholic steatohepatitis – A systematic review and meta analysis. J Hepatol. 2011;55(6):1383-1390. doi: https://doi.org/10.1016/j.jhep.2011.03.016

77. Belfort R, Harrison SA, Brown K, et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med. 2006;355(22):2297-2307. doi: https://doi.org/10.1056/NEJMoa060326

78. Aithal GP, Thomas JA, Kaye PV, et al. Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology. 2008;135(4):1176-1184. doi: https://doi.org/10.1053/j.gastro.2008.06.047


Supplementary files

1. Figure 1. Intracellular insulin signaling pathways
Subject
Type Исследовательские инструменты
View (304KB)    
Indexing metadata ▾
2. Figure 2. Choice of hypoglycemic drugs in the treatment of type 2 diabetes (EASD, ADA, 2022)
Subject
Type Исследовательские инструменты
View (1MB)    
Indexing metadata ▾

Review

For citations:


Petunina N.A., Goncharova E.V., Kuzina I.A., Nedosugova L.V., Martirosyan N.S., Теlnova M.Е. The role of pioglitazone in the fight against insulin resistance, atherosclerosis, cardiovascular disease, and non-alcoholic fatty liver disease. Diabetes mellitus. 2022;25(5):504-513. (In Russ.) https://doi.org/10.14341/DM12859

Views: 4158


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)