Non-immune diabetes mellitus in children due to heterozygous mutations in the glucokinase gene (GCK-MODY): data of 144 patients
https://doi.org/10.14341/DM12819
Abstract
BACKGROUND: Monogenic diabetes mellitus (MDM) is a rare form of diabetes mellitus (DM) which caused by one or more mutations in one of the genes that cause pancreatic β-cell dysfunction. Despite the sufficient knowledge of the most common subtypes of MODY, cases of MDM are undiagnosed and classified as type 1 diabetes mellitus and type 2 diabetes mellitus.
AIM: To study the clinical, laboratory characteristics, as well as age-related features of GCK-MODY in children.
MATERIALS AND METHODS: The studied population is patients with GCK-MODY under the age of 18 years. The diagnosis was confirmed by genetic test, a heterozygous mutation was identificated in the GCK gene.
RESULTS: MODY-GCK was verified in 144 patients (131 probands and 13 siblings) under the age of 18 years. Missense mutations were detected in 80.2% (n=105). Mutation was detected in one case in 59.6%. The most common missense mutations were p.G261R (n=7) and p.G258C (n=6). The age of diagnosis of carbohydrate metabolism disorders was 7.6 years [4.0; 11.2]. In 72.2% carbohydrate metabolism disorders were diagnosed accidentally, in 16.7% the examination was provided due to a family history of diabetes, 11.1% had clinical symptoms of diabetes. Fasting glycemia at diagnosis was 6.8 mmol / l [6.4; 7.3], HbA1c — 6.4% [6.1; 6.7]. At examination, the level of fasting glycemia corresponded to normal values in 16.4% of patients, impaired fasting glycemia — in 57.8%, diabetic — in 25.8%. In 62.3% of patients was impaired glucose tolerance, in 18.9% — to diabetic values, and in 11.7% of patients — to a normal level at 120 minutes during the oral glucose tolerance test. A moderate positive correlation was found between the age of examination and the levels of fasting glycemia (r=0.347, p<0.01), C-peptide (r=0.656, p<0.001), and insulin (r=0.531, p<0.001). Insulin resistance (IR) (HOMA index) was detected in 21 patients (14.5%), obesity — in 6 patients (4.2%). In 9 patients (6.25%) was revealed a moderate increase in the titer of specific pancreatic antibodies (AT). The presence of IR, obesity, AT did not affect the level of HbA1c. In 92.3% diet was priscribed, in 4.2% insulin was prescribed, 2.1% — metformin, 1.4% — sulfonylureas.
CONCLUSION: In children, disorders of carbohydrate metabolism in GCK-MODY are diagnosed accidentally, asymptomatically at any age from birth, and are characterized by a combination of impaired fasting glycemia and impaired glucose tolerance and, as a rule, do not require antihyperglycemic therapy
About the Authors
E. A. SechkoRussian Federation
Elena A. Sechko, MD, PhD
11 Dm. Ulyanova street, Moscow 117036
eLibrary SPIN: 4608-565
T. L. Kuraeva
Tamara L. Kuraeva, MD, PhD, Professor
Moscow
eLibrary SPIN: 8206-0406
L. I. Zilberman
Lubov I. Zilberman, MD, PhD
Moscow
eLibrary SPIN: 4488-7724
D. N. Laptev
Dmitry N. Laptev, MD, PhD
Moscow
eLibrary SPIN: 2419-4019
O. B. Bezlepkina
Olga B. Bezlepkina, MD, PhD, Professor
Moscow
eLibrary SPIN: 3884-0945
V. A. Peterkova
Valentina A. Peterkova, PhD, Professor, Academician of RAS
Moscow
eLibrary SPIN: 4009-2463
References
1. Hattersley AT, Greeley SAW, Polak M, et al. ISPAD Clinical Practice Consensus Guidelines 2018: The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 2018;19(S27):47-63. doi: https://doi.org/10.1111/pedi.12772
2. Tattersall RB, Fajans SS. A difference between the inheritance of classical juvenile-onset and maturity-onset type diabetes of young people. Diabetes. 1975;24(1):44-53. doi: https://doi.org/10.2337/diab.24.1.44
3. Yamagata K, Furuta H, Oda N, et al. Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1). Nature. 1996;384:458-460. doi: https://doi.org/10.1038/384458a0
4. Mozzillo E, Salzano G, Barbetti F, et al. Survey on etiological diagnosis of diabetes in 1244 Italian diabetic children and adolescents: impact of access to genetic testing. Diabetes Res Clin Pract. 2015;107(3):e15-e18. doi: https://doi.org/10.1016/j.diabres.2015.01.003
5. Fendler W, Borowiec M, Baranowska-Jazwiecka A, et al. Prevalence of monogenic diabetes amongst Polish children after a nationwide genetic screening campaign. Diabetologia. 2012;55(10):2631-2635. doi: https://doi.org/10.1007/s00125-012-2621-2
6. Chakera AJ, Spyer G, Vincent N, et al. The 0.1% of the population with glucokinase monogenic diabetes can be recognized by clinical characteristics in pregnancy: the Atlantic Diabetes in Pregnancy cohort. Diabetes Care. 2014;37(5):1230-1236. doi: https://doi.org/10.2337/dc13-2248
7. Kuraeva TL, Sechko EA, Zilberman LI, et al. Molecular genetic and clinical variants MODY2 and MODY3 in children in Russia. Problems of Endocrinology. 2015;61(5):14-25. (In Russ.). doi: https://doi.org/10.14341/probl201561514-25
8. Zubkova NA, Gioeva OA, Tikhonovich YuV, et al. Clinical and molecular genetic characteristics of MODY1—3 cases in the Russian Federation as shown by NGS. Problems of Endocrinology. 2017;63(6):369-378. (In Russ.). doi: https://doi.org/10.14341/probl2017636369-378
9. Glotov OS, Serebryakova EA, Turkunova ME, et al. Whole-exome sequencing in Russian children with non-type 1 diabetes mellitus reveals a wide spectrum of genetic variants in MODY-related and unrelated genes. Mol Med Rep. 2019;20(6):4905-4914. doi: https://doi.org/10.3892/mmr.2019.10751
10. Matschinsky FM. Regulation of pancreatic beta-cell glucokinase: from basics to therapeutics. Diabetes. 2002;51(S3):S394-S404. doi: https://doi.org/10.2337/diabetes.51.2007.s394
11. Stride A, Vaxillaire M, Tuomi T, et al. The genetic abnormality in the beta cell determines the response to an oral glucose load. Diabetologia. 2002;45(3):427-435. doi: https://doi.org/10.1007/s00125-001-0770-9
12. Stride A, Shields B, Gill-Carey O, et al. Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia. Diabetologia. 2014;57(1):54-56. doi: https://doi.org/10.1007/s00125-013-3075-x
13. Feigerlová E, Pruhová S, Dittertová L, et al. Aetiological heterogeneity of asymptomatic hyperglycaemia in children and adolescents. Eur J Pediatr. 2006;165(7):446-452. doi: https://doi.org/10.1007/s00431-006-0106-3
14. Pihoker C, Gilliam LK, Ellard S, et al. Prevalence, characteristics and clinical diagnosis of maturity onset diabetes of the young due to mutations in HNF1A, HNF4A, and glucokinase: results from the SEARCH for Diabetes in Youth. J Clin Endocrinol Metab. 2013;98(10):4055-4062. doi: https://doi.org/10.1210/jc.2013-1279
15. Gioeva OA, Kolodkina AA, Vasilyev EV, et al. Hereditary variant of diabetes mellitus caused by a defect of the NEUROD1 gene (MODY6): the fi rst description in Russia. Problems of Endocrinology. 2016;62(3):16-20. (In Russ.). doi: https://doi.org/10.14341/probl201662316-20
16. Osbak KK, Colclough K, Saint-Martin C, et al. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat. 2009;30(11):1512-1526. doi: https://doi.org/10.1002/humu.21110
17. Hager J, Blanché H, Sun F, et al. Six mutations in the glucokinase gene identified in MODY by using a nonradioactive sensitive screening technique. Diabetes. 1994;43(5):730-733. doi: https://doi.org/10.2337/diab.43.5.730
18. Gragnoli C, Cockburn BN, Chiaramonte F, et al. Early-onset Type II diabetes mellitus in Italian families due to mutations in the genes encoding hepatic nuclear factor 1 alpha and glucokinase. Diabetologia. 2001;44(10):1326-1329. doi: https://doi.org/10.1007/s001250100644
19. Lehto M, Wipemo C, Ivarsson SA, et al. High frequency of mutations in MODY and mitochondrial genes in Scandinavian patients with familial early-onset diabetes. Diabetologia. 1999;42(9):1131-1137. doi: https://doi.org/10.1007/s001250051281
20. Lorini R, Klersy C, d’Annunzio G, et al. Maturity-onset diabetes of the young in children with incidental hyperglycemia: a multicenter Italian study of 172 families. Diabetes Care. 2009;32(10):1864-1866. doi: https://doi.org/10.2337/dc08-2018
21. Takeda J, Gidh-Jain M, Xu LZ, et al. Structure/function studies of human beta-cell glucokinase. Enzymatic properties of a sequence polymorphism, mutations associated with diabetes, and other site-directed mutants. J Biol Chem. 1993;268(20):15200-15204.
22. Ellard S, Beards F, Allen LI, et al. A high prevalence of glucokinase mutations in gestational diabetic subjects selected by clinical criteria. Diabetologia. 2000;43(2):250-253. doi: https://doi.org/10.1007/s001250050038
23. Bertini C, Maioli M, Fresu P, et al. A new missense mutation in the glucokinase gene in an Italian Mody family. Diabetologia. 1996;39(11):1413-1414.
24. Gidh-Jain M, Takeda J, Xu LZ, et al. Glucokinase mutations associated with non-insulin-dependent (type 2) diabetes mellitus have decreased enzymatic activity: implications for structure/function relationships. Proc Natl Acad Sci U S A. 1993;90(5):1932-1936. doi: https://doi.org/10.1073/pnas.90.5.1932
25. Mantovani V, Salardi S, Cerreta V, et al. Identification of eight novel glucokinase mutations in Italian children with maturity-onset diabetes of the young. Hum Mutat. 2003;22(4):338. doi: https://doi.org/10.1002/humu.9179
26. Velho G, Blanché H, Vaxillaire M, et al. Identification of 14 new glucokinase mutations and description of the clinical profile of 42 MODY-2 families. Diabetologia. 1997;40(2):217-224. doi: https://doi.org/10.1007/s001250050666
27. Galán M, Vincent O, Roncero I, et al. Effects of novel maturity-onset diabetes of the young (MODY)-associated mutations on glucokinase activity and protein stability. Biochem J. 2006;393(Pt1):389-396. doi: https://doi.org/10.1042/BJ20051137
28. McKinney JL, Cao H, Robinson JF, et al. Spectrum of HNF1A and GCK mutations in Canadian families with maturity-onset diabetes of the young (MODY). Clin Invest Med. 2004;27(3):135-141.
29. Barrio R, Bellanné-Chantelot C, Moreno JC, et al. Nine novel mutations in maturity-onset diabetes of the young (MODY) candidate genes in 22 Spanish families. J Clin Endocrinol Metab. 2002;87(6):2532-2539. doi: https://doi.org/10.1210/jcem.87.6.8530
30. Jetton TL, Liang Y, Pettepher CC, et al. Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut. J Biol Chem. 1994;269(5):3641-3654. doi: https://doi.org/10.1016/S0021-9258(17)41910-7
31. Njølstad PR, Søvik O, Cuesta-Muñoz A, et al. Neonatal diabetes mellitus due to complete glucokinase deficiency. N Engl J Med. 2001;344(21):1588-1592. doi: https://doi.org/10.1056/NEJM200105243442104
32. Velho G, Petersen KF, Perseghin G, et al. Impaired hepatic glycogen synthesis in glucokinase-deficient (MODY-2) subjects. J Clin Invest. 1996;98(8):1755-1761. doi: https://doi.org/10.1172/JCI118974
33. Ovsyannikova OК, Shakhtshneider EV, Ivanoshchuk DE, et al. GCK-MODY diabetes course in persons over 18 years of age: prospective observation. Diabetes Mellitus. 2021;24(2):133-140. (In Russ.). doi: https://doi.org/10.14341/DM12319
34. Hughes AE, De Franco E, Globa E, et al. Identification of GCK-maturity-onset diabetes of the young in cases of neonatal hyperglycemia: A case series and review of clinical features. Pediatr Diabetes. 2021;22(6):876-881. doi: https://doi.org/10.1111/pedi.13239
35. Dedov II, Zubkova NA, Arbatskaya NY, et al. MODY2: clinical and molecular genetic characteristics of 13 cases of the disease. The first description of MODY in Russia. Problems of Endocrinology. 2009;55(3):3-7. (In Russ.). doi: https://doi.org/10.14341/probl20095533-7
36. Steele AM, Wensley KJ, Ellard S, et al. Use of HbA1c in the identification of patients with hyperglycaemia caused by a glucokinase mutation: observational case control studies. PLoS One. 2013;8(6):e65326. doi: https://doi.org/10.1371/journal.pone.0065326
37. Tutel’yan VA, Baturin AK, Kon’ IYa, et al. Rasprostranennost’ ozhireniya i izbytochnoi massy tela sredi detskogo naseleniya RF: mul’titsentrovoe issledovanie. Pediatria. 2014;93(5):28-31 (In Russ.).
38. Kleinberger JW, Copeland KC, Gandica RG, et al. Monogenic diabetes in overweight and obese youth diagnosed with type 2 diabetes: the TODAY clinical trial. Genet Med. 2018;20(6):583-590. doi: https://doi.org/10.1038/gim.2017.150
39. Lehto M, Tuomi T, Mahtani MM, et al. Characterization of the MODY3 phenotype. Early-onset diabetes caused by an insulin secretion defect. J Clin Invest. 1997;99(4):582-591. doi: https://doi.org/10.1172/JCI119199
40. Wilkin TJ. The accelerator hypothesis: weight gain as the missing link between Type I and Type II diabetes. Diabetologia. 2001;44(7):914-922. doi: https://doi.org/10.1007/s001250100548
41. Clément K, Pueyo ME, Vaxillaire M, et al. Assessment of insulin sensitivity in glucokinase-deficient subjects. Diabetologia. 1996;39(1):82-90. doi: https://doi.org/10.1007/BF00400417
42. Gungor N, Saad R, Janosky J, Arslanian S. Validation of surrogate estimates of insulin sensitivity and insulin secretion in children and adolescents. J Pediatr. 2004;144(1):47-55. doi: https://doi.org/10.1016/j.jpeds.2003.09.045
43. Stanik J, Dusatkova P, Cinek O, et al. De novo mutations of GCK, HNF1A and HNF4A may be more frequent in MODY than previously assumed. Diabetologia. 2014;57(3):480-484. doi: https://doi.org/10.1007/s00125-013-3119-2
44. Spyer G, Macleod KM, Shepherd M, et al. Pregnancy outcome in patients with raised blood glucose due to a heterozygous glucokinase gene mutation. Diabet Med. 2009;26(1):14-18. doi: https://doi.org/10.1111/j.1464-5491.2008.02622.x
Supplementary files
|
1. Рисунок 1. Корреляционная взаимосвязь между возрастом обследования и уровнем гликемии натощак у детей с GCK-MODY. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(131KB)
|
Indexing metadata ▾ |
|
2. Рисунок 2. Корреляционная взаимосвязь между возрастом обследования и уровнем С-пептида натощак у детей с GCK-MODY. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(109KB)
|
Indexing metadata ▾ |
|
3. Рисунок 3. Корреляционная взаимосвязь между возрастом обследования и уровнем инсулина натощак у детей с GCK-MODY. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(140KB)
|
Indexing metadata ▾ |
Review
For citations:
Sechko E.A., Kuraeva T.L., Zilberman L.I., Laptev D.N., Bezlepkina O.B., Peterkova V.A. Non-immune diabetes mellitus in children due to heterozygous mutations in the glucokinase gene (GCK-MODY): data of 144 patients. Diabetes mellitus. 2022;25(2):145-154. (In Russ.) https://doi.org/10.14341/DM12819

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).