Effect of oral antihyperglycemic drugs on purine metabolism
https://doi.org/10.14341/DM12756
Abstract
Gout and diabetes mellitus are metabolic diseases, the pathogenesis of which is based on an excess of organic molecules in the body, in the first case — uric acid (UA), in the second — glucose. It is assumed that UA can also be involved in the pathogenesis of type 2 diabetes mellitus (T2DM), while insulin resistance and hyperglycemia affect purine metabolism. Both diseases are associated with an increased risk of cardiovascular events. In addition, chronic microcrystalline inflammation, which is absent in asymptomatic hyperuricemia, but is an obligatory component of gout, is probably an independent factor in T2DM, arterial hypertension, and cardiovascular events. The treatment of both diseases is strategically similar: in gout, the goal is to achieve a normal blood MC level, in T2DM — to normalize glycemia, and the frequent combination of these metabolic diseases requires taking into account the effect of drug therapy on concomitant diseases. Most modern antihyperglycemic drugs can affect purine metabolism, which is confirmed by the results of a number of foreign works. At the same time, the effect of T2DM therapy on purine metabolism and gout has not been adequately covered in the domestic literature, which was the purpose of this review.
About the Author
T. S. PanevinRussian Federation
Taras S. Panevin, MD, PhD
34A Kashirskoe Shosse, 115522 Moscow
eLibrary SPIN-код: 7839-3145
References
1. Zhang Y, Yamamoto T, Hisatome I, et al. Uric acid induces oxidative stress and growth inhibition by activating adenosine monophosphate-activated protein kinase and extracellular signal-regulated kinase signal pathways in pancreatic β cells. Mol Cell Endocrinol. 2013;375(1-2):89-96. doi: https://doi.org/10.1016/j.mce.2013.04.027
2. Johnson RJ, Perez-Pozo SE, Sautin YY, et al. Hypothesis: could excessive fructose intake and uric acid cause type 2 diabetes? Endocr Rev. 2009;30(1):96-116. doi: https://doi.org/10.1210/er.2008-0033
3. Facchini F, Chen YD, Hollenbeck CB, Reaven GM. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA. 1991;266(21):3008-3011. doi: https://doi.org/10.1001/jama.1991.03470210076036
4. Dehghan A, van Hoek M, Sijbrands EJ, et al. High serum uric acid as a novel risk factor for type 2 diabetes. Diabetes Care. 2008;31(2):361-362. doi: https://doi.org/10.2337/dc07-1276
5. Kodama S, Saito K, Yachi Y, et al. Association between serum uric acid and development of type 2 diabetes. Diabetes Care. 2009;32(9):1737-1742. doi: https://doi.org/10.2337/dc09-0288
6. Zuo T, Liu X, Jiang L, et al. Hyperuricemia and coronary heart disease mortality: a meta-analysis of prospective cohort studies. BMC Cardiovasc. Disord. 2016;16(1):207. doi: https://doi.org/10.1186/s12872-016-0379-z71
7. Кобалава Ж.Д., Киякбаев Г.К. Влияние сахароснижающих препаратов на риск сердечно-сосудистых осложнений при сахарном диабете 2-го типа: реалии и перспективы // Кардиология. — 2018. — Т. 58. — №1. — С. 53-65. [Kobalava ZD, Kiyakbaev GK. Effects of Glucose Lowering Drugs on Cardiovascular Risk in Type 2 Diabetes Mellitus: Realities and Perspectives. Kardiologiia. 2018;58(1):53-65. (In Russ.)]. doi: https://doi.org/10.18087/cardio.2018.1.10082
8. Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: The National Health and Nutrition Examination Survey 2007-2008. Arthritis & Rheumatism. 2011;63(10):3136-3141. doi: https://doi.org/10.1002/art.30520
9. Sánchez-Lozada LG, Tapia E, Bautista-García P, et al. Effects of febuxostat on metabolic and renal alterations in rats with fructose-induced metabolic syndrome. Am J Physiol Renal Physiol. 2008;294(4):F710-F718. doi: https://doi.org/10.1152/ajprenal.00454.2007
10. Kalra S. Sodium Glucose Co-Transporter-2 (SGLT2) Inhibitors: A Review of Their Basic and Clinical Pharmacology. Diabetes Therapy. 2014;5(2):355-366. doi: https://doi.org/10.1007/s13300-014-0089-4
11. Zhao Y, Xu L, Tian D, et al. Effects of sodium‐glucose co‐transporter 2 (SGLT2) inhibitors on serum uric acid level: A meta‐analysis of randomized controlled trials. Diabetes, Obesity and Metabolism. 2017;20(2):458-462. doi: https://doi.org/10.1111/dom.13101
12. Xin Y, Guo Y, Li Y, et al. Effects of sodium glucose cotransporter-2 inhibitors on serum uric acid in type 2 diabetes mellitus: A systematic review with an indirect comparison meta-analysis. Saudi Journal of Biological Sciences. 2019;26(2):421-426. doi: https://doi.org/10.1016/j.sjbs.2018.11.013
13. Li J, Badve SV, Zhou Z, et al. The effects of canagliflozin on gout in type 2 diabetes: a post-hoc analysis of the CANVAS Program. The Lancet Rheumatology. 2019;1(4):e220-e228. doi: https://doi.org/10.1016/s2665-9913(19)30078-5
14. Паневин Т.С., Елисеев М.С., Шестакова М.В., Насонов Е.Л. Преимущества терапии ингибиторами натрий-глюкозного котранспортера 2 типа у пациентов с сахарным диабетом 2 типа в сочетании с гиперурикемией и подагрой // Терапевтический архив. — 2020. — Т. 92. — №5. — С. 110-118. [Panevin TS, Eliseev MS, Shestakova MV, Nasonov EL. Advantages of therapy with sodium glucose cotransporter type 2 inhibitors in patients with type 2 diabetes mellitus in combination with hyperuricemia and gout. Therapeutic Archive. 2020;92(5):110-118. (In Russ.)]. doi: https://doi.org/10.26442/00403660.2020.05.000633
15. Hill NR, Fatoba ST, Oke JL, et al. Global Prevalence of Chronic Kidney Disease – A Systematic Review and Meta-Analysis. Remuzzi G, editor. PLOS ONE. 2016;11(7):e0158765. doi: https://doi.org/10.1371/journal.pone.0158765
16. Vallon V, Gerasimova M, Rose MA, et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. American Journal of Physiology-Renal Physiology. 2014;306(2):F194-F204. doi: https://doi.org/10.1152/ajprenal.00520.2013
17. Liao X, Wang X, Li H, et al. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitor Increases Circulating Zinc-Α2-Glycoprotein Levels in Patients with Type 2 Diabetes. Scientific Reports. 2016;6(1):32887. doi: https://doi.org/10.1038/srep32887
18. Mancini SJ, Boyd D, Katwan OJ, et al. Canagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and -independent mechanisms. Scientific Reports. 2018;8(1):5276. doi: https://doi.org/10.1038/s41598-018-23420-4
19. Coperchini F, Leporati P, Rotondi M, Chiovato L. Expanding the therapeutic spectrum of metformin: from diabetes to cancer. Journal of Endocrinological Investigation. 2015;38(10):1047-1055. doi: https://doi.org/10.1007/s40618-015-0370-z
20. Lin HY-H, Chang K-T, Hung C-C, et al. Effects of the mTOR inhibitor Rapamycin on Monocyte-Secreted Chemokines. BMC Immunol. 2014;15(1):37. doi: https://doi.org/10.1186/s12865-014-0037-0
21. O’Neill LAJ, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature. 2013;493(7432):346-355. doi: https://doi.org/10.1038/nature11862
22. Bułdak Ł, Machnik G, Bułdak RJ, et al. Exenatide and metformin express their anti-inflammatory effects on human monocytes/macrophages by the attenuation of MAPKs and NFκB signaling. Naunyn-Schmiedeberg’s Archives of Pharmacology. 2016;389(10):1103-1115. doi: https://doi.org/10.1007/s00210-016-1277-8
23. Menegazzo L, Scattolini V, Cappellari R, et al. The antidiabetic drug metformin blunts NETosis in vitro and reduces circulating NETosis biomarkers in vivo. Acta Diabetologica. 2018;55(6):593-601. doi: https://doi.org/10.1007/s00592-018-1129-8
24. Vazirpanah N, Ottria A, van der Linden M, et al. mTOR inhibition by metformin impacts monosodium urate crystal–induced inflammation and cell death in gout: a prelude to a new add-on therapy? Annals of the Rheumatic Diseases. 2019;78(5):663-671. doi: https://doi.org/10.1136/annrheumdis-2018-214656
25. Bruderer SG, Bodmer M, Jick SS, Meier CR. Poorly controlled type 2 diabetes mellitus is associated with a decreased risk of incident gout: a population-based case-control study. Annals of the Rheumatic Diseases. 2014;74(9):1651-1658. doi: https://doi.org/10.1136/annrheumdis-2014-205337
26. Шестаков А.В., Саприна Т.В., Ануфрак И.А., и др. Метформин: новые перспективы в химиопрофилактике и терапии рака // Российский биотерапевтический журнал. — 2018. — Т. 17. — №3. — С. 12-19. [Shestakov AV, Saprina TV, Anufrak IA, et al. Metformin: new perspectives in chemoprevention and therapy of cancer. Russian Journal of Biotherapy. 2018;17(3):12-19 (In Russ.)]. doi: https://doi.org/10.17650/1726-9784-2018-17-3-12-19
27. Барскова В.Г., Елисеев М.С., Кудаева Ф.М., и др. Влияние метформина на течение подагры и инсулинорезистентность // Клиническая медицина. — 2009. — Т. 87. — №7. — С. 41-46. [Barskova VG, Eliseev MS, Kudaeva FM, et al. Effect of metformine on the clinical course of gout and insulin resistance. Clinical medicine. 2009;87(7):41-46 (In Russ.)].
28. Martinon F, Pétrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237-241. doi: https://doi.org/10.1038/nature04516
29. Jacques C, Gosset M, Berenbaum F, Gabay C. The role of IL-1 and IL-1Ra in joint inflammation and cartilage degradation. Vitam Horm. 2006;74:371-403. doi: https://doi.org/10.1016/S0083-6729(06)74016-X
30. Collins KH, Paul HA, Reimer RA, et al. Relationship between inflammation, the gut microbiota, and metabolic osteoarthritis development: studies in a rat model. Osteoarthritis Cartilage. 2015;23(11):1989-1998. doi: https://doi.org/10.1016/j.joca.2015.03.014
31. De la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, et al. Metformin Is Associated With Higher Relative Abundance of Mucin-Degrading Akkermansia muciniphila and Several Short-Chain Fatty Acid–Producing Microbiota in the Gut. Diabetes Care. 2016;40(1):54-62. doi: https://doi.org/10.2337/dc16-1324
32. Coletta DK, Sriwijitkamol A, Wajcberg E, et al. Pioglitazone stimulates AMP-activated protein kinase signalling and increases the expression of genes involved in adiponectin signalling, mitochondrial function and fat oxidation in human skeletal muscle in vivo: a randomised trial. Diabetologia. 2009;52(4):723-732. doi: https://doi.org/10.1007/s00125-008-1256-9
33. Lage R, Diéguez C, Vidal-Puig A, López M. AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol Med. 2008;14(12):539-549. doi: https://doi.org/10.1016/j.molmed.2008.09.007
34. Iwatani M, Wasada T, Katsumori K. Troglitazone decreases serum uric acid concentrations in Type II diabetic patients and non-diabetics. Diabetologia. 2000;43(6):814-815. doi: https://doi.org/10.1007/s001250051380
35. Cook DG, Shaper AG, Thelle DS, Whitehead TP. Serum uric acid, serum glucose and diabetes: relationships in a population study. Postgrad Med J. 1986;62(733):1001-1006. doi: https://doi.org/10.1136/pgmj.62.733.1001
36. González-Ortiz M, Hernández-Salazar E, Kam-Ramos AM, Martínez-Abundis E. Effect of pioglitazone on insulin secretion in patients with both impaired fasting glucose and impaired glucose tolerance. Diabetes Res Clin Pract. 2007;75(1):115-118. doi: https://doi.org/10.1016/j.diabres.2006.05.003
37. Gerber P, Lübben G, Heusler S, Dodo A. Effects of pioglitazone on metabolic control and blood pressure: a randomised study in patients with type 2 diabetes mellitus. Curr Med Res Opin. 2003;19(6):532-539. doi: https://doi.org/10.1185/030079903125002180
38. Bakris GL, Ruilope LM, McMorn SO, et al. Rosiglitazone reduces microalbuminuria and blood pressure independently of glycemia in type 2 diabetes patients with microalbuminuria. J Hypertens. 2006;24(10):2047-2055. doi: https://doi.org/10.1097/01.hjh.0000244955.39491.88
39. Seber S, Ucak S, Basat O, Altuntas Y. The effect of dual PPAR α/γ stimulation with combination of rosiglitazone and fenofibrate on metabolic parameters in type 2 diabetic patients. Diabetes Res Clinical Pract. 2006;71(1):52-58. doi: https://doi.org/10.1016/j.diabres.2005.05.009
40. Maalouf NM, Poindexter JR, Adams-Huet B, et al. The increased production and reduced urinary buffering of acid in uric acid stone formers is ameliorated by pioglitazone. Kidney Int. 2019;95(5):1262-1268. doi: https://doi.org/10.1016/j.kint.2018.11.024
41. Maalouf NM, Sakhaee K, Parks JH, et al. Association of urinary pH with body weight in nephrolithiasis. Kidney Int. 2004;65(4):1422-1425. doi: https://doi.org/10.1111/j.1523-1755.2004.00522.x
42. Haffner SM, Greenberg AS, Weston WM, et al. Effect of Rosiglitazone Treatment on Nontraditional Markers of Cardiovascular Disease in Patients With Type 2 Diabetes Mellitus. Circulation. 2002;106(6):679-684. doi: https://doi.org/10.1161/01.cir.0000025403.20953.23
43. Wang RC, Jiang DM. PPAR-γ agonist pioglitazone affects rat gouty arthritis by regulating cytokines. Genet Mol Res. 2014;13(3):6577-6581. doi: https://doi.org/10.4238/2014.august.28.2
44. Niu SW, Chang KT, Lin HY, et al. Decreased incidence of gout in diabetic patient s using pioglitazone. Rheumatology (Oxford). 2017;57(1):92-99. doi: https://doi.org/10.1093/rheumatology/kex363
45. Davidson MA, Mattison DR, Azoulay L, Krewski D. Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: past, present and future. Crit Rev Toxicol. 2017;48(1):52-108. doi: https://doi.org/10.1080/10408444.2017.1351420
46. Паневин Т.С., Желябина О.В., Елисеев М.С., Шестакова М.В. Уратснижающие эффекты ингибиторов дипептидилпептидазы-4 // Сахарный диабет. — 2020. — Т. 23. — №4. — С. 349-356 [Panevin TS, Zhelyabina OV, Eliseev MS, Shestakova MV. Urate-lowering effects of dipeptidyl peptidase-4 inhibitors. Diabetes Mellitus. 2020;23(4):349-356. (In Russ.)]. doi: https://doi.org/10.14341/DM12412
47. Rufinatscha K, Radlinger B, Dobner J, et al. Dipeptidyl peptidase-4 impairs insulin signaling and promotes lipid accumulation in hepatocytes. Biochemical and Biophysical Research Communications. 2017;485(2):366-371. doi: https://doi.org/10.1016/j.bbrc.2017.02.071
48. Itou M. Dipeptidyl peptidase-4: A key player in chronic liver disease. World J Gastroenterol. 2013;19(15):2298. doi: https://doi.org/10.3748/wjg.v19.i15.2298
49. Исмаилова Г.А. Влияние ингибиторов дипептидилпептидазы-4 на показатели липидного обмена у пациентов с сахарным диабетом 2-го типа в сочетании с метаболическим синдромом // Кардиология в Беларуси. — 2016. — Т. 1. — №44. — С. 138-147. [Ismailova G.A. Vliyanie ingibitorov dipeptidilpeptidazy-4 na pokazateli lipidnogo obmena u patsientov s sakharnym diabetom 2-go tipa v sochetanii s metabolicheskim sindromom. Kardiologiya v Belarusi. 2016;1(44):138-147. (In Russ.)].
50. Kusunoki M, Natsume Y, Miyata T, et al. Effects of Concomitant Administration of a Dipeptidyl Peptidase-4 Inhibitor in Japanese Patients with Type 2 Diabetes Showing Relatively Good Glycemic Control Under Treatment with a Sodium Glucose Co-Transporter 2 Inhibitor. Drug Research. 2018;68(12):704-709. doi: https://doi.org/10.1055/a-0585-0145
51. Hasan AA, Hocher B. Role of soluble and membrane-bound dipeptidyl peptidase-4 in diabetic nephropathy. Journal of Molecular Endocrinology. 2017;59(1):R1–R10. doi: https://doi.org/10.1530/jme-17-0005
52. Skov J. Effects of GLP-1 in the Kidney. Reviews in Endocrine and Metabolic Disorders. 2014;15(3):197-207. doi: https://doi.org/10.1007/s11154-014-9287-7
53. Ishibashi Y, Matsui T, Ojima A, et al. Glucagon-like peptide-1 inhibits angiotensin II-induced mesangial cell damage via protein kinase A. Microvascular Research. 2012;84(3):395-398. doi: https://doi.org/10.1016/j.mvr.2012.06.008
54. Sharkovska Y, Reichetzeder C, Alter M, et al. Blood pressure and glucose independent renoprotective effects of dipeptidyl peptidase-4 inhibition in a mouse model of type-2 diabetic nephropathy. J. Hypertens. 2014;32(11):2211-2223. doi: https://doi.org/10.1097/hjh.0000000000000328
55. Rosenstock J, Perkovic V, Johansen OE, et al. Effect of Linagliptin vs Placebo on Major Cardiovascular Events in Adults With Type 2 Diabetes and High Cardiovascular and Renal Risk. JAMA. 2019;321(1):69. doi: https://doi.org/10.1001/jama.2018.18269
56. Kabel AM, Omar MS, Alhadhrami A, et al. Linagliptin potentiates the effect of l-dopa on the behavioural, biochemical and immunohistochemical changes in experimentally-induced Parkinsonism: Role of toll-like receptor 4, TGF-β1, NF-κB and glucagon-like peptide 1. Physiology & Behavior. 2018;188:108-118. doi: https://doi.org/10.1016/j.physbeh.2018.01.028
57. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375(4):311-322. doi: https://doi.org/10.1056/NEJMoa1603827
58. Tonneijck L, Muskiet MHA, Smits MM, et al. Effect of immediate and prolonged GLP-1 receptor agonist administration on uric acid and kidney clearance: Post-hoc analyses of four clinical trials. Diabetes Obes Metab. 2018;20(5):1235-1245. doi: https://doi.org/10.1111/dom.13223
59. Muskiet MH, Tonneijck L, Smits MM, et al. Acute renal haemodynamic effects of glucagon-like peptide-1 receptor agonist exenatide in healthy overweight men. Diabetes Obes Metab. 2016;18(2):178-185. doi: https://doi.org/10.1111/dom.12601
60. Tonneijck L, Smits MM, Muskiet MHA, et al. Acute renal effects of the GLP-1 receptor agonist exenatide in overweight type 2 diabetes patients: a randomised, double-blind, placebo-controlled trial. Diabetologia. 2016;59(7):1412-1421. doi: https://doi.org/10.1007/s00125-016-3938-z
61. Tonneijck L, Smits MM, Muskiet MH, et al. Renal Effects of DPP-4 Inhibitor Sitagliptin or GLP-1 Receptor Agonist Liraglutide in Overweight Patients With Type 2 Diabetes: A 12-Week, Randomized, Double-Blind, Placebo-Controlled Trial. Diabetes Care. 2016;39(11):2042-2050. doi: https://doi.org/10.2337/dc16-1371
62. Tonneijck L, Muskiet MHA, Smits MM, et al. Postprandial renal haemodynamic effect of lixisenatide vs once-daily insulin-glulisine in patients with type 2 diabetes on insulin-glargine: An 8-week, randomised, open-label trial. Diabetes Obes Metab. 2017;19(12):1669-1680. doi: https://doi.org/10.1111/dom.12985
63. Hagos Y, Stein D, Ugele B, et al. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J Am Soc Nephrol. 2007;18(2):430-439. doi: https://doi.org/10.1681/ASN.2006040415
64. Chen X, Huang Q, Feng J, et al. GLP-1 alleviates NLRP3 inflammasome-dependent inflammation in perivascular adipose tissue by inhibiting the NF-κB signalling pathway. J Int Med Res. 2021;49(2):030006052199298. doi: https://doi.org/10.1177/0300060521992981
65. Liu X, Huang J, Li J, et al. Effects of Liraglutide Combined with Insulin on Oxidative Stress and Serum MCP-1 and NF-kB Levels in Type 2 Diabetes. J Coll Physicians Surg Pak. 2019;29(3):218-221. doi: https://doi.org/10.29271/jcpsp.2019.03.218
66. Dai Y, Dai D, Wang X, et al. DPP-4 inhibitors repress NLRP3 inflammasome and interleukin-1beta via GLP-1 receptor in macrophages through protein kinase C pathway. Cardiovasc Drugs Ther. 2014;28(5):425-432. doi: https://doi.org/10.1007/s10557-014-6539-4
67. Fralick M, Chen SK, Patorno E, Kim SC. Assessing the Risk for Gout With Sodium-Glucose Cotransporter-2 Inhibitors in Patients With Type 2 Diabetes: A Population-Based Cohort Study. Ann Intern Med. 2020;172(3):186-194. doi: https://doi.org/10.7326/M19-2610
68. Yanardag R, Ozsoy-Sacan O, Orak H, Ozgey Y. Protective effects of glurenorm (gliquidone) treatment on the liver injury of experimental diabetes. Drug Chem Toxicol. 2005;28(4):483-497. doi: https://doi.org/10.1080/01480540500262961
69. Hussain A, Latiwesh OB, Ali F, et al. Effects of Body Mass Index, Glycemic Control, and Hypoglycemic Drugs on Serum Uric Acid Levels in Type 2 Diabetic Patients. Cureus. 2018;10(8):e3158. doi: https://doi.org/10.7759/cureus.3158
70. Athinarayanan SJ, Adams RN, Hallberg SJ, et al. Long-Term Effects of a Novel Continuous Remote Care Intervention Including Nutritional Ketosis for the Management of Type 2 Diabetes: A 2-Year Non-randomized Clinical Trial. Front Endocrinol (Lausanne). 2019;10:348. doi: https://doi.org/10.3389/fendo.2019.00348
Review
For citations:
Panevin T.S. Effect of oral antihyperglycemic drugs on purine metabolism. Diabetes mellitus. 2021;24(4):342-349. (In Russ.) https://doi.org/10.14341/DM12756

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).