Preview

Diabetes mellitus

Advanced search

Some mechanisms of inflammation development in type 2 diabetes mellitus

https://doi.org/10.14341/DM12746

Abstract

Inflammation plays a key role in the development and progression of type 2 diabetes (T2DM), a disease characterized by peripheral insulin resistance and systemic glucolipotoxicity. The main source of inflammation in the early stages of the disease is visceral adipose tissue (VT). Macrophages are innate immune cells that are present in all peripheral tissues, including VT. Violation of the response of VT (MT) macrophages to changes in the microenvironment underlies aberrant inflammation and the development of local and systemic insulin resistance. The inflammatory activation of macrophages is regulated at several levels: stimulation of cell surface receptors, intracellular signaling, transcription, and metabolic levels. Which are activated by the transformation of macrophages along the pro-inflammatory or anti-inflammatory pathways. Such polarization of macrophages in modern immunology is divided into classical anti-inflammatory M1 polarization and alternative anti-inflammatory M2 polarization of macrophages. The M1 / M2 ratio of macrophages in the process of inflammation ensures the resolution of inflammation at different stages of its development. The review considers the main mechanisms involved in VT inflammation and the development of insulin resistance in T2DM, supported with the participation of immunocompetent cells, M1 / M2, as well as growth factors and humoral immunity factors secreted during this process.

About the Authors

L. A. Bochkareva
I.M. Sechenov First Moscow State Medical University
Russian Federation

Leyla A. Bochkareva, MD, PhD student 

Moscow



L. V. Nedosugova
I.M. Sechenov First Moscow State Medical University
Russian Federation

Ludmila V. Nedosugova, MD, PhD, Professor

8/2 Trubetskaya, 119991 Moscow

eLibrary SPIN: 1853-0215 



N. A. Petunina
I.M. Sechenov First Moscow State Medical University
Russian Federation

Nina A. Petunina, MD, PhD, Professor

eLibrary SPIN: 9784-3616 

Moscow



M. Е. Теlnova
I.M. Sechenov First Moscow State Medical University
Russian Federation

Milena Е. Теlnova, MD, PhD, associate Professor

eLibrary SPIN: 1007-4617 

Moscow



E. V. Goncharova
I.M. Sechenov First Moscow State Medical University
Russian Federation

Ekaterina V. Goncharova, MD, PhD, associate Professor

eLibrary SPIN: 7148-4669 

Moscow



References

1. Shimobayashi M, Albert V, Woelnerhanssen B, et al. Insulin resistance causes inflammation in adipose tissue. J Clin Invest. 2018;128:1538-1550. doi: https://doi.org/10.1172/JCI96139

2. Johnson AM, Olefsky JM. The origins and drivers of insulin resistance. Cell. 2013;152:673-684. doi: 1 https://doi.org/0.1016/j.cell.2013.01.041

3. Wu H, Ballantyne CM. Skeletal muscle inflammation and insulin resistance in obesity. J Clin Invest. 2017;127:43-54. doi: https://doi.org/10.1172/JCI88880

4. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87-91. doi: https://doi.org/10.1126/science.7678183

5. Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796-1808. doi: https://doi.org/10.1172/JCI200319246

6. Dong X, Liu J, Xu Y, Cao H. Role of macrophages in experimental liver injury and repair in mice. Exp Ther Med. 2019;17:3835-3847. doi: https://doi.org/10.3892/etm.2019.7450

7. Jaitin DA, Adlung L, Thaiss CA, et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell. 2019;178:686-698. doi: https://doi.org/10.1016/j.cell.2019.05.054

8. Dalmas E, Lehmann FM, Dror E, et al. Interleukin-33-activated islet-resident innate lymphoid cells promote insulin secretion through myeloid cell retinoic acid production. Immunity. 2017;47:928-942. doi: https://doi.org/10.1016/j.immuni.2017.10.015

9. Perdiguero EG, Geissmann F. The development and maintenance of resident macrophages. Nat Immunol. 2016;17:2-8. doi: https://doi.org/10.1038/ni.3341

10. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13. doi: https://doi.org/10.12703/P6-13

11. Noto H, Goto A, Tsujimoto T, et al. Latest insightsin to the risk of cancer in diabetes. J Diabetes Investig. 2013;4(3):225-232.doi: https://doi.org/10.1111/ jdi.12068

12. Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. NatMed. 2012;18(3):363-374. doi: https://doi.org/10.1038/nm.2627

13. Castoldi A, Naffah de Souza C, Câmara NOS, Moraes-Vieira PM. The Macrophage Switch in Obesity Development. Front Immunol. 2016;6:637. doi: https://doi.org/10.3389/fimmu.2015.00637

14. Coats BR, Schoenfelt KQ, Barbosa-Lorenzi VC, et al. Metabolically Activated Adipose Tissue Macrophages Perform Detrimental and Beneficial Functions during Diet-Induced Obesity. Cell Rep. 2017;20(13):3149-3161. doi: https://doi.org/10.1016/j.celrep.2017.08.096

15. Drareni K, Gautier J-F, Venteclef N, Alzaid F. Transcriptional control of macrophage polarisation in type 2 diabetes. Semin Immunopathol. 2019;41(4):515-529. doi: https://doi.org/10.1007/s00281-019-00748-1

16. Saltiel AR, Pessin JE. Insulin signaling pathways in time and space. Trends Cell Biol. 2002;12(2):65-71. doi: https://doi.org/10.1016/S0962-8924(01)02207-3

17. Aguirre V, Werner ED, Giraud J, et al. Phosphorylation of Ser307 in Insulin Receptor Substrate-1 Blocks Interactions with the Insulin Receptor and Inhibits Insulin Action. J Biol Chem. 2002;277(2):1531-1537. doi: https://doi.org/10.1074/jbc.M101521200

18. Ozawa K, Miyazaki M, Matsuhisa M, et al. The Endoplasmic Reticulum Chaperone Improves Insulin Resistance in Type 2 Diabetes. Diabetes. 2005;54(3):657-663. doi: https://doi.org/10.2337/diabetes.54.3.657

19. Lin Y, Berg AH, Iyengar P, et al. The Hyperglycemia-induced Inflammatory Response in Adipocytes. J Biol Chem. 2005;280(6):4617-4626. doi: https://doi.org/10.1074/jbc.M411863200

20. Haeusler RA, McGraw TE, Accili D. Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol. 2018;19:31-44. doi: https://doi.org/10.1038/nrm.2017.89

21. Takeda K. Toll-like receptors in innate immunity. Int Immunol. 2004;17(1):1-14. doi: https://doi.org/10.1093/intimm/dxh186

22. Calderon B, Carrero JA, Ferris ST, et al. The pancreas anatomy conditions the origin and properties of resident macrophages. J Exp Med. 2015;212:1497-1512. doi: https://doi.org/10.1084/jem.20150496

23. Banaei-Bouchareb L, Gouon-Evans V, Samara-Boustani D, et al. Insulin cell mass is altered in Csf1op/Csf1op macrophage-deficient mice. J Leukoc Biol. 2004;76:359-367. doi: https://doi.org/10.1189/jlb.1103591

24. Carrero JA, McCarthy DP, Ferris ST, et al. Resident macrophages of pancreatic islets have a seminal role in the initiation of autoimmune diabetes of NOD mice. Proc Natl Acad Sci. 2017;114(48):E10418-E10427. doi: https://doi.org/10.1073/pnas.1713543114

25. Unanue ER. The resident macrophages in murine pancreatic islets are constantly probing their local environment, capturing beta cell granules and blood particles. Diabetologia. 2018;61:1374-1383. doi: https://doi.org/10.1007/s00125-018-4592-4

26. Weitz JR, Makhmutova M, Almaca J, et al. Mouse pancreatic islet macrophages use locally released ATP to monitor beta cell activity. Diabetologia. 2018;61:182-192. doi: https://doi.org/10.1007/s00125-017-4416-y

27. Benner C, van der Meulen T, Caceres E, et al. The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genomics. 2014;15:620. doi: https://doi.org/10.1186/1471-2164-15-620

28. Hajmrle C, Smith N, Spigelman AF, et al. Interleukin-1 signaling contributes to acute islet compensation. JCI Insight. 2016;1(4). doi: https://doi.org/10.1172/jci.insight.86055

29. Burke SJ, Batdorf HM, Burk DH, et al. Pancreatic deletion of the interleukin-1 receptor disrupts whole body glucose homeostasis and promotes islet β-cell de-differentiation. Mol Metab. 2018;14(6):95-107. doi: https://doi.org/10.1016/j.molmet.2018.06.003

30. Dror E, Dalmas E, Meier DT, et al. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol. 2017;18(3):283-292. doi: https://doi.org/10.1038/ni.3659

31. Chittezhath M, Gunaseelan D, Zheng X, et al. Islet macrophages are associated with islet vascular remodeling and compensatory hyperinsulinemia during diabetes. Am J Physiol Metab. 2019;317(6):E1108-E1120. doi: https://doi.org/10.1152/ajpendo.00248.2019

32. Ying W, Lee YS, Dong Y, et al. Expansion of islet-resident macrophages leads to inflammation affecting beta cell proliferation and function in obesity. Cell Metab. 2019;29:457-474. doi: https://doi.org/10.1016/j.cmet.2018.12.003

33. Segerstolpe A, Palasantza A, Eliasson P, et al. Single-cell transcriptome profiling of human pancreatic islets in health and Type 2 diabetes. Cell Metab. 2016;24:593-607. doi: https://doi.org/10.1016/j.cmet.2016.08.020

34. Mahdi T, Hanzelmann S, Salehi A, et al. Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes. Cell Metab. 2012;16:625-633. doi: https://doi.org/10.1016/j.cmet.2012.10.009

35. Rausch ME, Weisberg S, Vardhana P, et al Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obes. 2008;32:451-463. doi: https://doi.org/10.1038/sj.ijo.0803744).

36. Boutens L, Stienstra R. Adipose tissue macrophages: going off track during obesity. Diabetologia. 2016;59:879-894. doi: https://doi.org/10.1007/s00125-016-3904-98437

37. Shi H, Kokoeva MV, Inouye K, et.al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116:3015-3025. doi: https://doi.org/10.1172/JCI28898

38. Shin KC, Hwang I, Choe SS, et al. Macrophage VLDLR mediates obesity-induced insulin resistance with adipose tissue inflammation. Nat Commun. 2017;8:1087. doi: https://doi.org/10.1038/s41467-017-01232-w

39. Hotamisligil GS, Peraldi P, Budavari A, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996;271:665-668. doi: https://doi.org/10.1126/science.271.5249.665

40. Haeusler RA, McGraw TE, Accili D. Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol. 2018;19:31-44. doi: https://doi.org/10.1038/nrm. 2017.89

41. Jager J, Gremeaux T, Cormont M, et al. Interleukin-1beta-induced insulin resistance in adipocytes through downregulation of insulin receptor substrate-1 expression. Endocrinology. 2007;148:241-251. doi: https://doi.org/10.1210/en.2006-0692

42. Wunderlich CM, Hövelmeyer N, Wunderlich FT. Mechanisms of chronic JAK-STAT3-SOCS3 signaling in obesity. JAK-STAT. 2013;2(2):e23878. doi: https://doi.org/10.4161/jkst.23878

43. O’Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016;16:553-565. doi: https://doi.org/10.1038/nri.2016.70

44. Oren R, Farnham AE, Saito K, et al. Metabolic patterns in three types of phagocytizing cells. J Cell Biol. 1963;17:487-501. doi: https://doi.org/10.1083/jcb.17.3.487

45. Pavlou S, Wang L, Xu H, et al. Higher phagocytic activity of thioglycollate-elicited peritoneal macrophages is related to metabolic status of the cells. J Inflamm. 2017;14:4. doi: https://doi.org/10.1186/s12950-017-0151-x

46. Kellett DN. 2-Deoxyglucose and inflammation. J Pharm Pharmacol. 1966;18:199-200. doi: https://doi.org/10.1111/j.2042-7158.1966.tb07853.x

47. Wang F, Zhang S, Vuckovic I, et al. Glycolytic stimulation is not a requirement for M2 macrophage differentiation. Cell Metab. 2018;28:463-475.e4. doi: https://doi.org/10.1016/j.cmet.2018.08.012

48. Schulman IG. Liver X receptors link lipid metabolism and inflammation. FEBS Lett. 2017;591:2978-2991. doi: https://doi.org/10.1002/1873-3468.12702

49. Oishi Y, Spann NJ, Link VM, et al. SREBP1 contributes to resolution of pro-inflammatory TLR4 signaling by reprogramming fatty acid metabolism. Cell Metab. 2017;25:412-427. doi: https://doi.org/10.1016/j.cmet.2016.11.009

50. Brennan JJ, Gilmore TD. Evolutionary origins of toll-like receptor signaling. Mol Biol Evol. 2018;35:1576-1587. doi: https://doi.org/10.1093/molbev/msy050

51. ErmisKaraali Z, Candan G, Aktuglu MB, et al. Toll-likereceptor2 (TLR-2) gene polymorphisms in type 2 diabetes mellitus. J Cell. 2019;20:559-563. doi: https://doi.org/10.22074/cellj.2019.5540

52. Gupta S, Maratha A, Siednienko J, et al. Analysis of inflammatory cytokine and TLR expression levels in Type 2 Diabetes with complications. Sci Rep. 2017;7(1):7633. doi: https://doi.org/10.1038/s41598-017-07230-8

53. Zhao GN, Jiang DS, Li H. Interferon regulatory factors: at the crossroads of immunity, metabolism, and disease. Biochim Biophys Acta. 2015;1852:365-378. doi: https://doi.org/10.1016/j.bbadis.2014.04.030.

54. Günthner R, Anders H-J. Interferon-Regulatory Factors Determine Macrophage Phenotype Polarization. Mediators Inflamm. 2013;2013:1-8. doi: https://doi.org/10.1155/2013/731023

55. Bandarra D, Rocha S. NF-kappa B and HIF crosstalk in immune responses. FEBS J. 2016;283:413-424. doi: https://doi.org/10.1111/febs.13578

56. Ye G, Gao H, Wang Z, et al. PPARalpha and PPAR gamma activation attenuates total free fatty acid and triglyceride accumulation in macrophages via the inhibition of Fatp1 expression. Cell Death Dis. 2019;10:39. doi: https://doi.org/10.1038/s41419-018-1135-3164

57. Lamichane S, Dahal Lamichane B, Kwon S-M. Pivotal Roles of Peroxisome Proliferator-Activated Receptors (PPARs) and Their Signal Cascade for Cellular and Whole-Body Energy Homeostasis. Int J Mol Sci. 2018;19(4):949. doi: https://doi.org/10.3390/ijms19040949

58. Welch JS, Ricote M, Akiyama TE, et al PPAR gamma and PPAR delta negatively regulate specific subsets of lipopolysaccharide and IFN-gamma target genes in macrophages. Proc Natl AcadSci USA. 2003;100:6712-6717. doi: https://doi.org/10.1073/pnas.1031789100

59. Sugii S, Olson P, Sears DD, et al. PPARγ activation in adipocytes is sufficient for systemic insulin sensitization. Proc Natl Acad Sci. 2009;106(52):22504-22509. doi: https://doi.org/10.1073/pnas.0912487106

60. Pollack RM, Donath MY, LeRoith D, Leibowitz G. Anti-inflammatory Agents in the Treatment of Diabetes and Its Vascular Complications. Diabetes Care. 2016;39(S2):S244-S252. doi: https://doi.org/10.2337/dcS15-3015


Supplementary files

Review

For citations:


Bochkareva L.A., Nedosugova L.V., Petunina N.A., Теlnova M.Е., Goncharova E.V. Some mechanisms of inflammation development in type 2 diabetes mellitus. Diabetes mellitus. 2021;24(4):334-341. (In Russ.) https://doi.org/10.14341/DM12746

Views: 5475


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)