Preview

Diabetes mellitus

Advanced search

Comparative evaluation of empagliflozin, canagliflozin and sitagliptin cardioprotective properties in rats with experimental type 2 diabetes mellitus

https://doi.org/10.14341/DM12714

Abstract

Background: Myocardial infarction (MI) is one of the leading causes of mortality in patients with type 2 diabetes mellitus (DM), therefore it is essential to give preference to a glucose-lowering drug having optimal cardioprotective properties. A comparative study of the various sodium-glucose co-transporter inhibitors representatives’ protective effects in experimental MI was not carried out within the framework of one study.

Aim: To evaluate the influence of empagliflozin (EMPA) and canagliflozin (CANA), in comparison with sitagliptin (SITA), on hemodynamic parameters and myocardial damage area in rats with diabetes type 2 model in experimental MI.

Materials and methods: Type 2 DM was modelled in Wistar rats by means of 4-week high-fat diet followed by nicotinamide 230 mg/kg and streptozotocin 60 mg/kg administration. 4 weeks after DM induction the following groups were made: «DM+SITA» — treatment with SITA 50 mg/kg, «DM+EMPA» — treatment with EMPA 2 mg/kg, «DM+CANA» — treatment with CANA 25 mg/kg per os once daily for 8 weeks. Animals in «DM» group remained untreated for the following 8 weeks. Rats in control group were fed with standard chow. 16 weeks after the experiment beginning transient global myocardial ischemia was modelled in all rats. Hemodynamic parameters and myocardium necrosis area were evaluated.

Results: The necrosis area was larger in «DM» group, than in control one (p=0.018). Infarction size in «DM+SITA» did not differ from that in «DM» group (62.92(41.29;75.84) and 57.26(45.51;70.08)%, р=0.554). Necrosis area in «DM+EMPA» and «DM+CANA» groups was smaller than in «DM» group (37.90(20.76;54.66)%, 46.15(29.77;50.55) vs 57.26(45.51;70.08)%, р=0.008 and р=0.009, respectively). Necrosis size did not differ between «DM+EMPA» and «DM+CANA» groups (p=0.630). Ischemic contracture in «DM+CANA» group was less prominent than under the use of all other glucose-lowering drugs. We observed increase of coronary blood flow in «DM+EMPA» group, in comparison with «DM», «DM+CANA» and «DM+SITA» groups.

Conclusions: SITA does not have cardioprotective effect in ischemia-reperfusion injury in diabetic rats. EMPA and CANA have similarly prominent infarct-limiting properties. EMPA is able to increase coronary blood flow, whereas cardioprotective action of CANA is associated with ischemic contracture diminishing.

About the Authors

A. V. Simanenkova
Almazov National Medical Research Centre, Pavlov First Saint-Petersburg State Medical University
Russian Federation

Anna V. Simanenkova, MD, PhD; eLibrary SPIN: 3675-9216.

2, Akkuratova street, 197341 St. Petersburg


Competing Interests:

not



S. M. Minasian
Almazov National Medical Research Centre; Pavlov First Saint-Petersburg State Medical University
Russian Federation

Sarkis M. Minasian, MD, PhD, eLibrary SPIN: 5241-8875


Competing Interests:

not



T. L. Karonova
Almazov National Medical Research Centre; Pavlov First Saint-Petersburg State Medical University
Russian Federation

Tatiana L. Karonova, MD, PhD, Professor; eLibrary SPIN: 3337-4071


Competing Interests:

not



T. D. Vlasov
Pavlov First Saint-Petersburg State Medical University
Russian Federation

Timur D. Vlasov, MD, PhD, Professor; eLibrary SPIN: 8367-1246


Competing Interests:

not



N. V. Timkina
Almazov National Medical Research Centre
Russian Federation

Natalya V. Timkina;eLibrary SPIN: 6259-7745


Competing Interests:

not



А. K. Khalzova
Pavlov First Saint-Petersburg State Medical University
Russian Federation

Aleksandra K. Khalzova


Competing Interests:

not



O. S. Fuks
Almazov National Medical Research Centre
Russian Federation

Oksana S. Fuks; eLibrary SPIN: 2899-7812


Competing Interests:

not



A. A. Shimshilashvili
Almazov National Medical Research Centre
Russian Federation

Anzhelika A. Shimshilashvili


Competing Interests:

not



V. A. Timofeeva
Almazov National Medical Research Centre
Russian Federation

Valeria A. Timofeeva


Competing Interests:

not



Yu. Yu. Borshchev
Almazov National Medical Research Centre
Russian Federation

Yury Yu. Borshchev, PhD in Biology; eLibrary SPIN: 3454-4113


Competing Interests:

not



M. M. Galagudza
Almazov National Medical Research Centre; Pavlov First Saint-Petersburg State Medical University
Russian Federation

Michael M. Galagudza, MD, PhD, Professor, Corresponding member of Russian Academy of Sciences; eLibrary SPIN: 2485-4176


Competing Interests:

not



References

1. IDF Diabetes Atlas [Internet]. [cited 2020 Dec 11]. Available from: https://diabetesatlas.org/data/en/world/

2. Dedov II, Shestakova MV, Mayorov AYu, et al. Standards of specialized diabetes care. Diabetes Mellitus. 2019;22(S1):1-144 (In Russ.). doi: https://doi.org/10.14341/DM221S1

3. Davies MJ, D’Alessio DA, Fradkin J, et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2018;61(12):2461-2498. doi: https://doi.org/10.1007/s00125-018-4729-5

4. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117-2128. doi: https://doi.org/10.1056/NEJMoa1504720

5. McGuire DK, Zinman B, Inzucchi SE, et al. Effects of empagliflozin on first plus recurrent clinical events in patients with type 2 diabetes and atherosclerotic cardiovascular disease: Results from the EMPA-REG OUTCOME trial. Lancet Diabetes Endocrinol. 2020;8(12):949–959. doi: https://doi.org/10.1016/S2213-8587(20)30344-2

6. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017;377(7):644-657. doi: https://doi.org/10.1056/NEJMoa1611925

7. Yurista SR, Silljé HHW, Oberdorf-Maass SU, et al. Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. Eur J Heart Fail. 2019;21(7):862-873. doi: https://doi.org/10.1002/ejhf.1473

8. Oshima H, Miki T, Kuno A, et al. Empagliflozin, an SGLT2 Inhibitor, Reduced the Mortality Rate after Acute Myocardial Infarction with Modification of Cardiac Metabolomes and Antioxidants in Diabetic Rats. J Pharmacol Exp Ther. 2019;368(3):524-534. doi: https://doi.org/10.1124/jpet.118.253666

9. Lee MMY, Brooksbank KJM, Wetherall K, et al. Effect of Empagliflozin on Left Ventricular Volumes in Patients With Type 2 Diabetes, or Prediabetes, and Heart Failure With Reduced Ejection Fraction (SUGAR-DM-HF). Circulation. 2021;143(6):516–525. doi: https://doi.org/10.1161/CIRCULATIONAHA.120.052186

10. Sayour AA, Korkmaz-Icöz S, Loganathan S, et al. Acute canagliflozin treatment protects against in vivo myocardial ischemia-reperfusion injury in non-diabetic male rats and enhances endothelium-dependent vasorelaxation. J Transl Med. 2019;17(1):127. doi: https://doi.org/10.1186/s12967-019-1881-8

11. Lim VG, Bell RM, Arjun S, et al. SGLT2 Inhibitor, Canagliflozin, Attenuates Myocardial Infarction in the Diabetic and Nondiabetic Heart. JACC Basic Transl Sci. 2019;4(1):15-26. doi: https://doi.org/10.1016/j.jacbts.2018.10.002

12. Green JB, Bethel MA, Armstrong PW, et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2015;373(3):232-242. doi: https://doi.org/10.1056/NEJMoa1501352

13. Connelly KA, Zhang Y, Advani A, et al. DPP-4 inhibition attenuates cardiac dysfunction and adverse remodeling following myocardial infarction in rats with experimental diabetes. Cardiovasc Ther. 2013;31(5):259-267. doi: https://doi.org/10.1111/1755-5922.12005

14. Khodeer DM, Bilasy SE, Farag NE, et al. Sitagliptin protects diabetic rats with acute myocardial infarction through induction of angiogenesis: role of IGF-1 and VEGF. Can J Physiol Pharmacol. 2019;97(11):1053-1063. doi: https://doi.org/10.1139/cjpp-2018-0670

15. Bayrasheva VK, Babenko AY, Dobronravov VA, et al. Uninephrectomized High-Fat-Fed Nicotinamide-Streptozotocin-Induced Diabetic Rats: A Model for the Investigation of Diabetic Nephropathy in Type 2 Diabetes. J Diabetes Res. 2016;2016(1S1):1-18. doi: https://doi.org/10.1155/2016/8317850

16. Minasian SM, Galagudza MM, Dmitriev YV, et al. Myocardial protection against global ischemia with Krebs-Henseleit buffer-based cardioplegic solution. J Cardiothorac Surg. 2013;8:60. doi: https://doi.org/10.1186/1749-8090-8-60

17. Neeland IJ, McGuire DK, Chilton R, et al. Empagliflozin reduces body weight and indices of adipose distribution in patients with type 2 diabetes mellitus. Diab Vasc Dis Res. 2016;13(2):119-126. doi: https://doi.org/10.1177/1479164115616901

18. Pereira MJ, Eriksson JW. Emerging Role of SGLT-2 Inhibitors for the Treatment of Obesity. Drugs. 2019;79(3):219-230. doi: https://doi.org/10.1007/s40265-019-1057-0

19. Takebayashi K, Inukai T. Effect of Sodium Glucose Cotransporter 2 Inhibitors With Low SGLT2/SGLT1 Selectivity on Circulating Glucagon-Like Peptide 1 Levels in Type 2 Diabetes Mellitus. J Clin Med Res. 2017;9(9):745-753. doi: https://doi.org/10.14740/jocmr3112w

20. Polidori D, Sha S, Mudaliar S, et al. Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: results of a randomized, placebo-controlled study. Diabetes Care. 2013;36(8):2154-2161. doi: https://doi.org/10.2337/dc12-2391

21. Yu AS, Hirayama BA, Timbol G, et al. Functional expression of SGLTs in rat brain. Am J Physiol Cell Physiol. 2010;299(6):1277-1284. doi: https://doi.org/10.1152/ajpcell.00296.2010

22. Andreadou I, Efentakis P, Balafas E, et al. Empagliflozin Limits Myocardial Infarction in Vivo and Cell Death in Vitro: Role of STAT3, Mitochondria, and Redox Aspects. Front Physiol. 2017;8(1-1):1-18. doi: https://doi.org/10.3389/fphys.2017.01077


Supplementary files

Review

For citations:


Simanenkova A.V., Minasian S.M., Karonova T.L., Vlasov T.D., Timkina N.V., Khalzova А.K., Fuks O.S., Shimshilashvili A.A., Timofeeva V.A., Borshchev Yu.Yu., Galagudza M.M. Comparative evaluation of empagliflozin, canagliflozin and sitagliptin cardioprotective properties in rats with experimental type 2 diabetes mellitus. Diabetes mellitus. 2021;24(2):111-121. (In Russ.) https://doi.org/10.14341/DM12714

Views: 1748


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)