Relationship between prostate cancer and type 2 diabetes mellitus
https://doi.org/10.14341/DM12672
Abstract
Type 2 diabetes mellitus (DM2) and prostate cancer are widespread diseases throughout the world. Type II diabetes mellitus is accompanied by a deterioration in glycemic control, hyperinsulinemia, and insulin resistance (IR). The accumulation of glucose and lipids leads to a decrease in the density of insulin receptors and the development of insulin resistance in adipose tissue. This contributes to the development of hyperinsulinemia, which suppresses the breakdown of fat and leads to the progression of obesity. A vicious circle develops: insulin resistance → hyperinsulinemia → obesity → insulin resistance. Insulin influences the progression of the cell cycle, proliferation, and metastatic activity of the tumor.
Recent studies have shown a strong direct correlation between fasting insulin levels and cancer mortality in men. This may be especially true in patients over 65, who are, in the first place, more likely to develop prostate cancer than younger patients. It should be noted that it is insulin, and not glucose, that is associated with the claim for the development of cancer. Hyperinsulinemia, which often occurs as a result of androgen deprivation therapy (ADT), the standard treatment for prostate cancer, is associated with a high tumor aggressiveness and faster treatment failure — the development of castrate-refractory prostate cancer. It is reasonable to assume that hyperinsulinemia — under whatever circumstances it is caused, whether due to ADT or due to inadequate nutrition and other lifestyle factors — can have the same negative effect on cellular signaling.
Metabolic syndrome — essentially chronically elevated insulin levels — is closely associated with recurrence of cancer and worse post-treatment outcomes, which has led researchers to question generally accepted dietary guidelines for cancer patients, especially when they are undergoing treatment or recover from treatment, which may include recommendations to consume anything that will help maintain or restore body weight, regardless of sugar or carbohydrate content or its effect on insulin levels. A large number of patients live with hyperinsulinemia, but normoglycemia. Chronic hyperinsulinemia is the main driver of cardiometabolic disease, even when blood sugar levels are within reference values. The scale of this problem is not recognized by the medical and scientific community.
About the Authors
M. N. PeshkovRussian Federation
Maxim N. Peshkov, MD, PhD
SPIN: 1691-1478
91 Volokolamskoye Highway street, 125371 Moscow
Competing Interests:
No
G. P. Peshkova
Russian Federation
Galina P. Peshkova, MD, PhD
SPIN: 6849-5407
Ryazan
Competing Interests:
No
Igor V. Reshetov
Russian Federation
Igor V. Reshetov, MD, PhD
SPIN: 3845-6604
Moscow
Competing Interests:
No
References
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34. doi: https://doi.org/10.3322/caac.21551.
2. State of oncological care in Russia in 2020. Ed by Kaprin АD, Starinskiy VV, Shachzadova AO. Moscow: MNIOI im. P.A. Gertsena — filial FGBU “NMIRTS radiologii” Minzdrava Rossii; 2020. 236 p. (In Russ.).
3. Hsing AW, Sakoda LC, Chua S Jr. Obesity, metabolic syndrome, and prostate cancer. Am J Clin Nutr. 2007;86:s843–s857. doi: https://doi.org/10.1093/ajcn/86.3.843S
4. Esposito K, Chiodini P, Capuano A, et al. Effect of metabolic syndrome and its components on prostate cancer risk: meta-analysis. J Endocrinol Invest. 2013;36:132-139. doi: https://doi.org/10.1007/BF03346748
5. Esposito K, Chiodini P, Colao A, et al. Metabolic syndrome and risk of cancer: a systematic review and meta-analysis. Diabetes Care. 2012;35:2402–2411. doi: https://doi.org/10.2337/dc12-0336
6. Keum N, Greenwood DC, Lee DH, et al. Adult Weight Gain and Adiposity-Related Cancers: A Dose-Response Meta-Analysis of Prospective Observational Studies. JNCI J Natl Cancer Inst. 2015;107(2). doi: https://doi.org/10.1093/jnci/djv088
7. Pandeya DR, Mittal A, Sathian B, et al. Role of hyperinsulinemia in increased risk of prostate cancer: a case control study of the Kathmandu Valley. Asian Pac J Cancer Prev. 2014;15:1031-1033. doi: https://doi.org/10.7314/apjcp.2014.15.2.1031
8. De Nunzio C, Aronson W, Freedland SJ, et al. The correlation between metabolic syndrome and prostatic diseases. Eur Urol. 2012;61:560-570. doi: https://doi.org/10.1016/j.eururo.2011.11.013
9. Nguyen PL, Alibhai SMH, Basaria S, et al. Adverse effects of androgen deprivation therapy and strategies to mitigate them. Eur Urol. 2015; 67:825-836. doi: https://doi.org/10.1016/j.eururo.2014.07.010
10. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640-1645. doi: https://doi.org/10.1161/CIRCULATIONAHA.109.192644
11. Hsing AW, Devesa SS. Trends and patterns of prostate cancer: what do they suggest? Epidemiol Rev. 2001;23:3-13. doi: https://doi.org/10.1093/oxfordjournals.epirev.a000792
12. Han JH, Choi NY, Bang SH, et al. Relationship between serum prostate-specific antigen levels and components of metabolic syndrome in healthy men. Urology. 2008;72:749-754. doi: https://doi.org/10.1016/j.urology.2008.01.084
13. Keating NL, O’Malley AJ, Smith MR. Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J Clin Oncol. 2006;24(27):4448-4456. doi: https://doi.org/10.1200/JCO.2006.06.2497
14. Dedov II, Shestakova MV, Mayorov AYu, et al. Standards of specialized diabetes care. Diabetes Mellitus. 2019;22(S1):1-144 (In Russ.). doi: https://doi.org/10.14341/DM221S1
15. Tsilidis KK, Kasimis JC, Lopez DS, et al. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ. 2015;350:g7607. doi: https://doi.org/10.1136/bmj.g7607
16. Bonovas S, Filioussi K, Tsantes A. Diabetes mellitus and risk of prostate cancer: a meta-analysis. Diabetologia. 2004;47(6):1071-1078. doi: https://doi.org/10.1007/s00125-004-1415-6
17. Kasper JS, Giovannucci E. A meta-analysis of diabetes mellitus and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 2006;15(11):2056-2062. doi: https://doi.org/10.1158/1055-9965.EPI-06-0410
18. Bansal D, Bhansali A, Kapil G, et al. Type 2 diabetes and risk of prostate cancer: a meta-analysis of observational studies. Prostate Cancer Prostatic Dis. 2013;16(2):151-158. doi: https://doi.org/10.1038/pcan.2012.40
19. Jian Gang P, Mo L, Lu Y, et al. Diabetes mellitus and the risk of prostate cancer: an update and cumulative meta-analysis. Endocr Res. 2015;40(1):54-61. doi: https://doi.org/10.3109/07435800.2014.934961
20. Dankner R, Boffetta P, Balicer RD, et al. Time-dependent Risk of cancer after a diabetes diagnosis in a cohort of 2.3 million adults. Am J Epidemiol. 2016;183(12):1098-1106. doi: https://doi.org/10.1093/aje/kwv290
21. Tsilidis KK, Allen NE, Appleby PN, et al Diabetes mellitus and risk of prostate cancer in the European prospective investigation into cancer and nutrition Int J Cancer. 2015;136(2):372-381. doi: https://doi.org/10.1002/ijc.28989
22. Lai GY, Park Y, Hartge P, et al. The association between selfreported diabetes and cancer incidence in the NIH-AARP diet and health study. J Clin Endocrinol Metab. 2013;98(3):E497-E502. doi: https://doi.org/10.1210/jc.2012-3335
23. Lawrence YR, Morag O, Benderly M, et al. Association between metabolic syndrome, diabetes mellitus and prostate cancer risk. Prostate Cancer Prostatic Dis. 2013;16(2):181-186. doi: https://doi.org/10.1038/pcan.2012.54
24. Fall K, Garmo H, Gudbjornsdottir S, et al. Diabetes mellitus and prostate cancer risk; a nation wide case-control study within PCBaSe Sweden. Cancer Epidemiol Biomarkers Prev. 2013;22(6):1102-1109 doi: https://doi.org/10.1158/1055-9965.EPI-12-1046
25. Magliano DJ, Davis WA, Shaw JE, et al. Incidence and predictors of all-cause and site-specific cancer in type 2 diabetes: the Fremantle diabetes study. Eur J Endocrinol. 2012;167(4):589-599. doi: https://doi.org/10.1530/EJE-12-0053
26. Attner B, Landin-OlssonM, LithmanT, et al. Cancer among patients with diabetes, obesity and abnormal blood lipids: a population-based register study in Sweden. Cancer Causes Control. 2012;23(5):769-777 doi: https://doi.org/10.1007/s10552-012-9946-5
27. Moses K A, Utuama O A, Goodman M, et al. The association of diabetes and positive prostate biopsy in a US veteran population Prostate Cancer. Prostatic Dis. 2012;15(1):70-74 doi: https://doi.org/10.1038/pcan.2011.40
28. Samueal VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest 2016;1(26):12-22. doi: https://doi.org/10.1172/JCI77812
29. Arcidiacono B, Iiritano S, Nocera A, et al. Insulin Resistance and Cancer Risk: An Overview of the Pathogenetic Mechanisms. Exp Diabetes Res. 2012;2012:1-12. doi: https://doi.org/10.1155/2012/789174
30. Perks CM, Zielinska HA, Wang J, et al. Insulin receptor isoform variations in prostate cancer cells. Front Endocrinol. 2016;7:132. doi: https://doi.org/10.3389/fendo.2016.00132
31. Albanes D, Weinstein SJ, Wright ME, et al. Serum insulin, glucose, indices of insulin resistance, and risk of prostate cancer. J Natl Cancer Inst. 2009;101:1272-1279. doi: https://doi.org/10.1093/jnci/djp260
32. Darbinian JA, Ferrara AM, Van Den Eeden SK, et al. Glycemic status and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 2008;17:628-635. doi: https://doi.org/10.1158/1055-9965.EPI-07-2610
33. Preston MA, Riis AH, Ehrenstein V, et al. Metformin use and prostate cancer risk. Eur Urol. 2014;66:1012-1020. doi: https://doi.org/10.1016/j.eururo.2014.04.027
34. Chen Y, Chen Q, Wang Z, Zhou J. Insulin Therapy and Risk of Prostate Cancer: a Systematic Review and Meta-Analysis of Observational Studies. PLoS One. 2013;8(11):e81594. doi: https://doi.org/10.1371/journal.pone.0081594
35. Cattabiani C, Basaria S, Ceda GP. Luci, et al. Relationship between testosterone deficiency and cardiovascular risk and mortality in adult men. J Endocrinol Invest. 2012;35:104-120. doi: https://doi.org/10.3275/8061
36. Di Sebastiano KM, Pinthus JH, Duivenvoorden WCM, et al. Elevated c-peptides, abdominal obesity and abnormal adipokine profile are associated with higher Gleason scores in prostate cancer. Prostate. 2017;77:211-221. doi: https://doi.org/10.1002/pros.23262
37. Zamboni PF, Simone M, Passaro A, et al. Metabolic profile in patients with benign prostate hyperplasia or prostate cancer and normal glucose tolerance. Horm Metab Res. 2003;35:296-300. doi: https://doi.org/10.1055/s-2003-41305
38. Di Sebastiano KM, Bell KE, Mitchell AS, et al. Glucose metabolism during the acute prostate cancer treatment trajectory: The influence of age and obesity. Clin Nutr. 2018;37(1):195-203. doi: https://doi.org/10.1016/j.clnu.2016.11.024
39. Tekdoğan UY, Bağcioğlu M, Özcan S, et al. The effect of oral glucose tolerance test on insulin and some related indicators in elderly male patients with prostate cancer and benign prostate hyperplasia. Turkish J Geriatrics. 2015;18:10-14.
40. Hammarsten J, Hogstedt B. Hyperinsulinaemia: a prospective risk factor for lethal clinical prostate cancer. Eur J Cancer. 2005;41(18):2887-2895. doi: https://doi.org/10.1016/j.ejca.2005.09.003
41. Rodriguez C, Patel AV, Mondul AM, et al. Diabetes and risk of prostate cancer in a prospective cohort of US men. Am J Epidemiol. 2005;161(2):147-152. doi: https://doi.org/10.1093/aje/kwh334
42. Noda T, Kikugawa T, Tanji N, et al. Long-term exposure to leptin enhances the growth of prostate cancer cells. Int J Oncol. 2015;46(4):1535-1542. doi: https://doi.org/10.3892/ijo.2015.2845
43. Keating NL, O’Malley AJ, Freedland SJ, et al. Diabetes and cardiovascular disease during androgen deprivation therapy: observational study of veterans with prostate cancer. J Natl Cancer Inst. 2010;102:39-46. doi: https://doi.org/10.1093/jnci/djp404
44. Crawley D, Garma H, Rudman S, et al. Association between duration and type of androgen deprivation therapy and risk of diabetes in men with prostate cancer. Int J Cancer. 2016;139:2698-2704. doi: https://doi.org/10.1002/ijc.30403
45. Dennis RJ, Maldonado D, Rojas MX, et al. Inadequate glucose control in type 2 diabetes is associated with impaired lung function and systemic inflammation: a cross-sectional study. BMC Pulm Med. 2010;10:38. doi: https://doi.org/10.1186/1471-2466-10-38
46. Kalinchenko SY, Tishova YA, Mskhalaya GJ, et al. Effects of testosterone supplementation on markers of the metabolic syndrome and inflammation in hypogonadal men with the metabolic syndrome: the double-blinded placebo-controlled Moscow study. Clin Endocrinol (Oxf). 2010;73:602-612. doi: https://doi.org/10.1111/j.1365-2265.2010.03845.x
47. Thong MSY, van de Poll-Franse L, Hoffman RM et al. Diabetes mellitus and health-related quality of life in prostate cancer: 5- year results from the Prostate Cancer Outcomes Study. BJU Int. 2010;107:1223-1231. doi: https://doi.org/10.1111/j.1464-410X.2010.09861.x
48. Renehan AG, Tyson M, Egger M, et al. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371:569-578. doi: https://doi.org/10.1093/annonc/mdr603
49. Cao Y, Ma J. Body mass index, prostate cancer-specific mortality, and biochemical recurrence: a systematic review and meta-analysis. Cancer Prev Res. 2011;4:486-501. doi: https://doi.org/10.1158/1940-6207.CAPR-10-0229
50. Allott EH, Masko EM, Freedland SJ. Obesity and prostate cancer: weighing the evidence. Eur Urol. 2013;63:800-809. doi: https://doi.org/10.1016/j.eururo.2012.11.013
51. Discacciati A, Orsini N, Wolk A. Body mass index and incidence of localized and advanced prostate cancer — a dose-response meta-analysis of prospective studies. Ann Oncol. 2012;23:1665-1671. doi: https://doi.org/10.1093/annonc/mdr603
52. Rowlands MA, Gunnell D, Harris R, et al. Circulating insulin-like growth factor peptides and prostate cancer risk: a systematic review and meta-analysis. Int J Cancer. 2009;124:2416-2429. doi: https://doi.org/10.1002/ijc.24202
53. Kapoor D, Malkin CJ, Channert KS, et al. Androgens insulin resistance and vascular disease in men. Clin Endocrinol (Oxf ). 2005;63:239-250. doi: https://doi.org/10.1111/j.1365-2265.2005.02299.x
54. Alshaker H, Sacco K, Alfraidi A, et al. Leptin signalling, obesity and prostate cancer: molecular and clinical perspective on the old dilemma. Oncotarget. 2015;6:35556-35563. doi: https://doi.org/10.18632/oncotarget.5574
55. Nigro E, Scudiero O, Monaco ML, et al. New Insight into Adiponectin Role in Obesity and Obesity-Related Diseases. Biomed Res Int. 2014;2014:1-14. doi: https://doi.org/10.1155/2014/658913
56. Goktas S, Yilmaz MI, Caglar K, et al. Prostate cancer and adiponectin. Urologia. 2005;65:1168-1172. doi: https://doi.org/10.3233/CBM-160467
57. Kelesidis I, Kelesidis T, Mantzoros CS. Adiponectin and cancer: a systematic review. Br J Cancer. 2006;94:1221-1225. doi: https://doi.org/10.1038/sj.bjc.6603051
58. Paris M, Mourtzakis M. Assessment of skeletal muscle mass in critically ill patients: considerations fot the utility of computed tomography images and ultrasonography. Curr Opin Clin Nutr Metab Care. 2016;19:125-130. doi: https://doi.org/10.1097/MCO.0000000000000259
59. Chen Z, Maricic M, Nguyen P, et al. Low bone density and high percentage of body fat among men who were treated with androgen deprivation therapy for prostate carcinoma. Cancer. 2002;95:2136-2144. doi: https://doi.org/10.1002/cncr.10967
60. Muller M, Grobbee DE, Tonkelaar I, et al. Endogenous sex hormones and metabolic syndrome in aging men. J Clin Endocrinol Metab. 2005;90:2618-2623. doi: https://doi.org/10.1210/jc.2004-1158.
Supplementary files
|
1. Рисунок 1. Циклическая, интегрированная модель рака простаты. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(366KB)
|
Indexing metadata ▾ |
Review
For citations:
Peshkov M.N., Peshkova G.P., Reshetov I.V. Relationship between prostate cancer and type 2 diabetes mellitus. Diabetes mellitus. 2021;24(6):583-591. (In Russ.) https://doi.org/10.14341/DM12672

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).