Preview

Diabetes mellitus

Advanced search

Artificial intelligence in diabetology

https://doi.org/10.14341/DM12665

Abstract

This review presents the applications of artificial intelligence for the study of the mechanisms of diabetes development and generation of new technologies of its prevention, monitoring and treatment. In recent years, a huge amount of molecular data has been accumulated, revealing the pathogenic mechanisms of diabetes and its complications. Data mining and text mining open up new possibilities for processing this information. Analysis of gene networks makes it possible to identify molecular interactions that are important for the development of diabetes and its complications, as well as to identify new targeted molecules. Based on the big data analysis and machine learning, new platforms have been created for prediction and screening of diabetes, diabetic retinopathy, chronic kidney disease, and cardiovascular disease. Machine learning algorithms are applied for personalized prediction of glucose trends, in the closed-loop insulin delivery systems and decision support systems for lifestyle modification and diabetes treatment. The use of artificial intelligence for the analysis of large databases, registers, and real-world evidence studies seems to be promising. The introduction of artificial intelligence systems is in line with global trends in modern medicine, including the transition to digital and distant technologies, personification of treatment, high-precision forecasting and patient-centered care. There is an urgent need for further research in this field, with an assessment of the clinical effectiveness and economic feasibility.

About the Authors

V. V. Klimontov
Federal Research Center Institute of Cytology and Genetics
Russian Federation

Vadim V. Klimontov, MD, PhD, Dr. Med. Sci. ; eLibrary SPIN: 1734-4030.

2, Timakov Str., Novosibirsk, 630060


Competing Interests:

No conflict of interest



V. B. Berikov
Federal Research Center Institute of Cytology and Genetics; Sobolev Institute of Mathematics
Russian Federation

Vladimir B. Berikov, PhD in. Tech. Sci., senior research associate, eLibrary SPIN: 8108-2591.

Novosibirsk


Competing Interests:

No conflict of interest.



O. V. Saik
Federal Research Center Institute of Cytology and Genetics
Russian Federation

Olga V. Saik, PhD in Biology, research associate; eLibrary SPIN: 6702-1490.

Novosibirsk


Competing Interests:

No conflict of interest



References

1. Guo Y, Hao Z, Zhao S, Gong J, Yang F. Artificial Intelligence in Health Care: Bibliometric Analysis. J Med Internet Res. 2020;22(7):e18228. doi: https://doi.org/10.2196/18228

2. Russell S, Norvig P. Artificial intelligence: a modern approach. 2nd ed. Moscow: LLC «I.D. Williams»; 2016. (In Russ.)].

3. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-444. doi: https://doi.org/10.1038/nature14539

4. Flach P. Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press; 2012.

5. Alpaydin E. Introduction to machine learning. MIT press; 2020.

6. Kolchanov NA, Ignatieva EV, Podkolodnaya OA, et al. Gene networks. Vavilov Journal of Genetics and Breeding. 2013;17(4/2):833-850. (In Russ.).

7. Gao S, Jia S, Hessner MJ, Wang X. Predicting disease-related subnetworks for type 1 diabetes using a new network activity score. OMICS. 2012;16(10):566-78. doi: https://doi.org/10.1089/omi.2012.0029

8. Li Y, Li J. Disease gene identification by random walk on multigraphs merging heterogeneous genomic and phenotype data. BMC Genomics. 2012;13(S7):S27. doi: https://doi.org/10.1186/1471-2164-13-S7-S27

9. Lee I, Blom UM, Wang PI, et al. Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res. 2011;21(7):1109-1121. doi: https://doi.org/10.1101/gr.118992.110

10. Dumas ME, Domange C, Calderari S, et al. Topological analysis of metabolic networks integrating co-segregating transcriptomes and metabolomes in type 2 diabetic rat congenic series. Genome Med. 2016;8(1):1-5. doi: https://doi.org/10.1186/s13073-016-0352-6

11. Sun S, Sun F, Wang Y. Multi-level comparative framework based on gene pair-wise expression across three insulin target tissues for type 2 diabetes. Front Genet. 2019;10:252. doi: https://doi.org/10.3389/fgene.2019.00252

12. Liang F, Quan Y, Wu A, et al. Insulin-resistance and depression cohort data mining to identify nutraceutical related DNA methylation biomarker for type 2 diabetes. Genes Dis. January 2020. doi: https://doi.org/10.1016/j.gendis.2020.01.013

13. Du Z, Uversky VN. A Comprehensive Survey of the Roles of Highly Disordered Proteins in Type 2 Diabetes. Int J Mol Sci. 2017;18(10):2010. doi: https://doi.org/10.3390/ijms18102010

14. Vyas R, Bapat S, Jain E, et al. Building and analysis of protein-protein interactions related to diabetes mellitus using support vector machine, biomedical text mining and network analysis. Comput Biol Chem. 2016;65:37-44. doi: https://doi.org/10.1016/j.compbiolchem.2016.09.011

15. Ivanisenko VA, Saik OV, Ivanisenko NV, et al. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology. BMC Syst Biol. 2015;9(Suppl 2):S2. doi: https://doi.org/10.1186/1752-0509-9-S2-S2

16. Ivanisenko VA, Demenkov PS, Ivanisenko TV, et al. A new version of the ANDSystem tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. BMC Bioinformatics. 2019;20(S1):34. doi: https://doi.org/10.1186/s12859-018-2567-6

17. Saik OV, Klimontov VV. Bioinformatic Reconstruction and Analysis of Gene Networks Related to Glucose Variability in Diabetes and Its Complications. Int J Mol Sci. 2020;21(22):E8691. doi: https://doi.org/10.3390/ijms21228691

18. Gong F, Chen Y, Wang H, Lu H. On building a diabetes centric knowledge base via mining the web. BMC Med Inform Decis Mak. 2019;19(S2):49. doi: https://doi.org/10.1186/s12911-019-0771-6

19. Nguyen BP, Pham HN, Tran H, et al. Predicting the onset of type 2 diabetes using wide and deep learning with electronic health records. Comput Methods Programs Biomed. 2019;182:105055. doi: https://doi.org/10.1016/j.cmpb.2019.105055

20. Lai H, Huang H, Keshavjee K, et al. Predictive models for diabetes mellitus using machine learning techniques. BMC Endocr Disord. 2019;19(1):101. doi: https://doi.org/10.1186/s12902-019-0436-6

21. Xiong XL, Zhang RX, Bi Y, et al. Machine Learning Models in Type 2 Diabetes Risk Prediction: Results from a Cross-sectional Retrospective Study in Chinese Adults. Curr Med Sci. 2019;39(4):582-588. doi: https://doi.org/10.1007/s11596-019-2077-4

22. Liao X, Kerr D, Morales J, Duncan I. Application of Machine Learning to Identify Clustering of Cardiometabolic Risk Factors in U.S. Adults. Diabetes Technol Ther. 2019;21(5):245-253. doi: https://doi.org/10.1089/dia.2018.0390

23. Dinh A, Miertschin S, Young A, Mohanty SD. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning. BMC Med Inform Decis Mak. 2019;19(1):211. doi: https://doi.org/10.1186/s12911-019-0918-5

24. Panaretos D, Koloverou E, Dimopoulos AC, et al. A comparison of statistical and machine-learning techniques in evaluating the association between dietary patterns and 10-year cardiometabolic risk (2002-2012): the ATTICA study. Br J Nutr. 2018;120(3):326-334. doi: https://doi.org/10.1017/S0007114518001150

25. Bernardini M, Romeo L, Misericordia P, Frontoni E. Discovering the Type 2 Diabetes in Electronic Health Records Using the Sparse Balanced Support Vector Machine. IEEE J Biomed Health Inform. 2020;24(1):235-246. doi: https://doi.org/10.1109/JBHI.2019.2899218

26. Chen P, Pan C. Diabetes classification model based on boosting algorithms. BMC Bioinformatics. 2018;19(1):109. doi: https://doi.org/10.1186/s12859-018-2090-9

27. Spänig S, Emberger-Klein A, Sowa JP, et al. The virtual doctor: An interactive clinical-decision-support system based on deep learning for non-invasive prediction of diabetes. Artif Intell Med. 2019;100:101706. doi: https://doi.org/10.1016/j.artmed.2019.101706

28. Al-Jarrah MA, Shatnawi H. Non-proliferative diabetic retinopathy symptoms detection and classification using neural network. J Med Eng Technol. 2017;41(6):498-505. doi: https://doi.org/10.1080/03091902.2017.1358772

29. Sayres R, Taly A, Rahimy E, et al. Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist Grading for Diabetic Retinopathy. Ophthalmology. 2019;126(4):552-564. doi: https://doi.org/10.1016/j.ophtha.2018.11.016

30. Wang XN, Dai L, Li ST, et al. Automatic Grading System for Diabetic Retinopathy Diagnosis Using Deep Learning Artificial Intelligence Software [published online ahead of print, 2020 May 15]. Curr Eye Res. 2020;1-6. doi: https://doi.org/10.1080/02713683.2020.1764975

31. Simões PW, Dos Passos MG, Amaral LL, et al. Meta-Analysis of the Sensitivity of Decision Support Systems in Diagnosing Diabetic Retinopathy. Stud Health Technol Inform. 2019;264:878-882. doi: https://doi.org/10.3233/SHTI190349

32. Shah A, Clarida W, Amelon R, et al. Validation of Automated Screening for Referable Diabetic Retinopathy With an Autonomous Diagnostic Artificial Intelligence System in a Spanish Population. J Diabetes Sci Technol. March 2020:193229682090621. doi: https://doi.org/10.1177/1932296820906212

33. Sosale B, Aravind SR, Murthy H, et al. Simple, Mobile-based Artificial Intelligence Algorithm in the detection of Diabetic Retinopathy (SMART) study. BMJ Open Diabetes Res Care. 2020;8(1):e000892. doi: https://doi.org/10.1136/bmjdrc-2019-000892

34. Rodriguez-Romero V, Bergstrom RF, Decker BS, et al. Prediction of Nephropathy in Type 2 Diabetes: An Analysis of the ACCORD Trial Applying Machine Learning Techniques. Clin Transl Sci. 2019;12(5):519-528. doi: https://doi.org/10.1111/cts.12647

35. Makino M, Yoshimoto R, Ono M, et al. Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning. Sci Rep. 2019;9(1):11862. doi: https://doi.org/10.1038/s41598-019-48263-5

36. Dagliati A, Marini S, Sacchi L, et al. Machine Learning Methods to Predict Diabetes Complications. J Diabetes Sci Technol. 2018;12(2):295-302. doi: https://doi.org/10.1177/1932296817706375

37. Williams BM, Borroni D, Liu R, et al. An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal confocal microscopy: a development and validation study. Diabetologia. 2020;63(2):419-430. doi: https://doi.org/10.1007/s00125-019-05023-4

38. Alaa AM, Bolton T, Di Angelantonio E, et al. Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants. PLoS One. 2019;14(5):e0213653. doi:10.1371/journal.pone.0213653

39. Kim E, Caraballo PJ, Castro MR, et al. Towards more Accessible Precision Medicine: Building a more Transferable Machine Learning Model to Support Prognostic Decisions for Micro- and Macrovascular Complications of Type 2 Diabetes Mellitus. J Med Syst. 2019;43(7):185. doi: https://doi.org/10.1007/s10916-019-1321-6

40. Karpel’ev VA, Filippov YI, Tarasov YV, et al. Mathematical Modeling of the Blood Glucose Regulation System in Diabetes Mellitus Patients. Vestn Ross Akad Med Nauk. 2015;(5):549-560. (In Russ.). doi: https://doi.org/10.15690/vramn.v70.i5.1441.

41. Contreras I, Vehi J. Artificial Intelligence for Diabetes Management and Decision Support: Literature Review. J Med Internet Res. 2018;20(5):e10775. doi: https://doi.org/10.2196/10775

42. Rodríguez-Rodríguez I, Chatzigiannakis I, Rodríguez JV, et al. Utility of Big Data in Predicting Short-Term Blood Glucose Levels in Type 1 Diabetes Mellitus Through Machine Learning Techniques. Sensors (Basel). 2019;19(20):4482. doi: https://doi.org/10.3390/s19204482

43. Hidalgo JI, Colmenar JM, Kronberger G, et al. Data Based Prediction of Blood Glucose Concentrations Using Evolutionary Methods. J Med Syst. 2017;41(9):142. doi: https://doi.org/10.1007/s10916-017-0788-2

44. Oviedo S, Contreras I, Quirós C, et al. Risk-based postprandial hypoglycemia forecasting using supervised learning. Int J Med Inform. 2019;126:1-8. doi: https://doi.org/10.1016/j.ijmedinf.2019.03.008

45. Mirshekarian S, Bunescu R, Marling C, Schwartz F. Using LSTMs to learn physiological models of blood glucose behavior. Conf Proc IEEE Eng Med Biol Soc. 2017;2017:2887-2891. doi: https://doi.org/10.1109/EMBC.2017.8037460

46. Mosquera-Lopez C, Dodier R, Tyler NS, et al. Predicting and Preventing Nocturnal Hypoglycemia in Type 1 Diabetes Using Big Data Analytics and Decision Theoretic Analysis. Diabetes Technol Ther. 2020;22(11):801-811. doi: https://doi.org/10.1089/dia.2019.0458

47. Mayo M, Chepulis L, Paul RG. Glycemic-aware metrics and oversampling techniques for predicting blood glucose levels using machine learning. PLoS One. 2019;14(12):e0225613. doi: https://doi.org/10.1371/journal.pone.0225613

48. Seo W, Lee YB, Lee S, et al. A machine-learning approach to predict postprandial hypoglycemia. BMC Med Inform Decis Mak. 2019;19(1):210. doi: https://doi.org/10.1186/s12911-019-0943-4

49. Oviedo S, Contreras I, Bertachi A, et al. Minimizing postprandial hypoglycemia in Type 1 diabetes patients using multiple insulin injections and capillary blood glucose self-monitoring with machine learning techniques. Comput Methods Programs Biomed. 2019;178:175-180. doi: https://doi.org/10.1016/j.cmpb.2019.06.025

50. Rodríguez-Rodríguez I, Rodríguez J-V, Chatzigiannakis I, Zamora Izquierdo M. On the Possibility of Predicting Glycaemia ‘On the Fly’ with Constrained IoT Devices in Type 1 Diabetes Mellitus Patients. Sensors. 2019;19(20):4538. doi: https://doi.org/10.3390/s19204538

51. Biester T, Kordonouri O, Holder M, et al. «Let the Algorithm Do the Work»: Reduction of Hypoglycemia Using Sensor-Augmented Pump Therapy with Predictive Insulin Suspension (SmartGuard) in Pediatric Type 1 Diabetes Patients. Diabetes Technol Ther. 2017;19(3):173-182. doi: https://doi.org/10.1089/dia.2016.0349

52. Bosi E, Choudhary P, de Valk HW, et al. Efficacy and safety of suspend-before-low insulin pump technology in hypoglycaemia-prone adults with type 1 diabetes (SMILE): an open-label randomised controlled trial. Lancet Diabetes Endocrinol. 2019;7(6):462-472. doi: https://doi.org/10.1016/S2213-8587(19)30150-0

53. Saunders A, Messer LH, Forlenza GP. MiniMed 670G hybrid closed loop artificial pancreas system for the treatment of type 1 diabetes mellitus: overview of its safety and efficacy. Expert Rev Med Devices. 2019;16(10):845-853. doi: https://doi.org/10.1080/17434440.2019.1670639

54. Lepore G, Scaranna C, Corsi A, et al. Switching from Suspend-Before-Low Insulin Pump Technology to a Hybrid Closed-Loop System Improves Glucose Control and Reduces Glucose Variability: A Retrospective Observational Case-Control Study. Diabetes Technol Ther. 2020;22(4):321-325. doi: https://doi.org/10.1089/dia.2019.0302

55. Boughton CK, Hovorka R. The artificial pancreas. Curr Opin Organ Transplant. 2020;25(4):336-342. doi: https://doi.org/10.1097/MOT.0000000000000786

56. Lee S, Kim J, Park SW, et al. Toward a Fully Automated Artificial Pancreas System Using a Bioinspired Reinforcement Learning Design: In Silico Validation. IEEE J Biomed Heal Informatics. 2021;25(2):536-546. doi: https://doi.org/10.1109/JBHI.2020.3002022

57. Fico G, Arredondo MT. Use of an holistic approach for effective adoption of User-Centred-Design techniques in diabetes disease management: Experiences in user need elicitation. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:2139-2142. doi: https://doi.org/10.1109/EMBC.2015.7318812

58. Tyler NS, Mosquera-Lopez CM, Wilson LM, et al. An artificial intelligence decision support system for the management of type 1 diabetes. Nat Metab. 2020;2(7):612-619. doi: https://doi.org/10.1038/s42255-020-0212-y

59. Rigla M, Martínez-Sarriegui I, García-Sáez G, et al. Gestational Diabetes Management Using Smart Mobile Telemedicine. J Diabetes Sci Technol. 2018;12(2):260-264. doi: https://doi.org/10.1177/1932296817704442

60. Caballero-Ruiz E, García-Sáez G, Rigla M, et al. A web-based clinical decision support system for gestational diabetes: Automatic diet prescription and detection of insulin needs. Int J Med Inform. 2017;102:35-49. doi: https://doi.org/10.1016/j.ijmedinf.2017.02.014

61. Alotaibi MM, Istepanian R, Philip N. A mobile diabetes management and educational system for type-2 diabetics in Saudi Arabia (SAED). Mhealth. 2016;2:33–33. doi: https://doi.org/10.21037/mhealth.2016.08.01

62. Hempe JM, Liu S, Myers L, et al. The Hemoglobin Glycation Index Identifies Subpopulations With Harms or Benefits From Intensive Treatment in the ACCORD Trial. Diabetes Care. 2015;38(6):1067-1074. doi: https://doi.org/10.2337/dc14-1844

63. Basu S, Raghavan S, Wexler DJ, Berkowitz SA. Characteristics Associated With Decreased or Increased Mortality Risk From Glycemic Therapy Among Patients With Type 2 Diabetes and High Cardiovascular Risk: Machine Learning Analysis of the ACCORD Trial. Diabetes Care. 2018;41(3):604-612. doi: https://doi.org/10.2337/dc17-2252

64. Pettus J, Roussel R, Liz Zhou F, et al. Rates of Hypoglycemia Predicted in Patients with Type 2 Diabetes on Insulin Glargine 300 U/ml Versus First- and Second-Generation Basal Insulin Analogs: The Real-World LIGHTNING Study. Diabetes Ther. 2019;10(2):617-633. doi: https://doi.org/10.1007/s13300-019-0568-8

65. Bosnyak Z, Zhou FL, Jimenez J, Berria R. Predictive Modeling of Hypoglycemia Risk with Basal Insulin Use in Type 2 Diabetes: Use of Machine Learning in the LIGHTNING Study. Diabetes Ther. 2019;10(2):605-615. doi: https://doi.org/10.1007/s13300-019-0567-9

66. Johnston SS, Morton JM, Kalsekar I, et al. Using Machine Learning Applied to Real-World Healthcare Data for Predictive Analytics: An Applied Example in Bariatric Surgery. Value Health. 2019;22(5):580-586. doi: https://doi.org/10.1016/j.jval.2019.01.011


Supplementary files

Review

For citations:


Klimontov V.V., Berikov V.B., Saik O.V. Artificial intelligence in diabetology. Diabetes mellitus. 2021;24(2):156-166. (In Russ.) https://doi.org/10.14341/DM12665

Views: 6057


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)