Simultaneous pancreas‐kidney transplantation in type 1 diabetes mellitus. Clinical options
https://doi.org/10.14341/DM12509
Abstract
Simultaneous pancreas-kidney transplantation (SPKT) is the most promising treatment option for patients with type 1 diabetes mellitus (T1DM) and end-stage renal disease (ESRD) due to diabetic nephropathy (DN). Successful SPKT eliminates uremic intoxication and hyperglycemia – the leading trigger of vascular diabetic complications. Therefore, euglycemia is an important metabolic change in patients after surgery and remains only one of the factors for the saved renal allograft functioning. In the case of resuming renal replacement therapy by dialysis after SPKT, the management and monitoring of the pancreatic graft remains open. Special attention to the pancreatic graft’s function is due to both the potential risk of surgical complications, and some probability of T1DM relapse with the need to resume insulin therapy. In patients with saved function of both transplants, the assessment of the dynamics of diabetic complications in general becomes more important. The results of few studies in this regard remain contradictory. Thus, clinical options can be unpredictably diverse and require not only search for the root cause, but also optimization of rehabilitation tactics, even if the expected results are achieved.
About the Authors
A. S. SeverinaRussian Federation
MD, PhD, leading research associate
I. I. Larina
Russian Federation
MD, research associate
A. S Shutovа
Russian Federation
M. S. Shamkhalova
Russian Federation
MD, PhD
I. V. Dmitriev
Russian Federation
MD, PhD
Aleksey V. Pinchuk
Russian Federation
MD, PhD
S. V. Arzumanov
Russian Federation
MD, PhD
M. V. Shestakova
Russian Federation
MD, PhD, Professor
References
1. Gruessner AC, Sutherland DE. Pancreas-transplant outcomes for United States (US) cases as reported to the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR). New York: Oxford University Press. 2010;299-315. doi: https://doi.org/10.1093/med/9780199565863.003.0017
2. Lodhi SA, Lamb KE, Meier-Kriesche HU. Solid organ allograft survival improvement in the United States: the long-term does not mirror the dramatic short-term success. Am J Transplant. 2011;11(6):1226-1235. doi: https://doi.org/10.1111/j.1600-6143.2011.03539.x
3. Seron D, Moreso F, Arias M, et al. Estimation of renal allograft half-life: fact or fiction? Nephrol Dial Transplant. 2011;26(9):3013-3018. doi: https://doi.org/10.1093/ndt/gfq788
4. Wolf M, Weir MR, Kopyt N, et al. Prospective cohort study of mineral metabolism after kidney transplantation. Transplantation. 2016;100(1):184-189. doi: https://doi.org/10.1097/TP.0000000000000823
5. Viglietti D, Serrato T, Abboud I, et al. Kidney graft dysfunction in simultaneous pancreas-kidney recipients after pancreas failure: analysis of early and late protocol biopsies. Clin Transplant. 2013;27(3):E249-255. doi: https://doi.org/10.1111/ctr.12095
6. Pera IP, Vasallo MJ, Rabasa TA, et al. Quality of life in simultaneous pancreas-kidney transplant recipients. Clin Transplant. 2009;23(5):600-605. doi: https://doi.org/10.1111/j.1399-0012.2009.01054.x
7. Vendrame F, Hopfner YY, Diamantopoulos S, et al. Risk factors for type 1 diabetes recurrence in immunosuppressed recipients of simultaneous pancreas-kidney transplants. Am J Transplant. 2016;16(1):235-245. doi: https://doi.org/10.1111 / ajt.13426
8. Martins L, Malheiro J, Henriques AC, et al. Pancreas-kidney transplantation and the evolution of pancreatic autoantibodies. Transplant Proc. 2009;41(3):913-915. doi: https://doi.org/10.1016/j.transproceed.2009.01.068
9. Martins LS. Autoimmune diabetes recurrence should be routinely monitored after pancreas transplantation. World J Transplant. 2014;4(3):183-187. doi: https://doi.org/10.5500/wjt.v4.i3.183
10. Vendrame F, Pileggi A, Laughlin E, et al. Recurrence of type 1 diabetes after simultaneous pancreas-kidney transplantation, despite immunosuppression, is associated with autoantibodies and pathogenic autoreactive CD4 T-cells. Diabetes. 2010;59(4):947-957. doi: https://doi.org/10.2337/db09-0498
11. Krischer JP, Cuthbertson DD, Yu L, et al. Screening strategies for the identification of multiple antibody-positive relatives of individuals with Type 1 diabetes. J Clin Endocrinol Metab. 2003;88(1):103-108. doi: https://doi.org/10.1210/jc.2002-020760
12. Wenzlau JM, Juhl K, Yu L, et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A. 2007;104(43):17040-17045. doi: https://doi.org/10.1073/pnas.0705894104
13. Trinanes J, Rodriguez-Rodriguez AE, Brito-Casillas Y, et al. Deciphering ta- crolimus-induced toxicity in pancreatic p cells. Am J Transplant. 2017;17(11):2829-2840. doi: https://doi.org/10.1111/ajt.14323
14. Сторожев Р.В., Нефедова Г.А., Тетерин Ю.С., и др. Гистологическое изучение биоптатов слизистой оболочки донорской двенадцатиперстной кишки в диагностике отторжения панкреатодуоденального комплекса: опыт НИИ СП им. Н.В. Склифосовского // Трансплантология. — 2018. — Т. 10. — №2. — С. 110–117. [Storozhev RV, Nefedova GA, Teterin YuS, et al. Histological study of donor’s duodenal mucosa biopsy specimens in the diagnosis of pancreatoduodenal complex rejection: the experience of N.V. Sklifosovsky Research Institute for Emergency Medicine. Transplantologiia. 2018;10(2):110-117. (In Russ.)]. doi: https://doi.org/10.23873/2074-0506-2018-10-2-110-117
15. Martin-Pagola A, Sisino G, Allende G, et al. Insulin protein and proliferation in ductal cells in the transplanted pancreas of patients with Type 1 diabetes and recurrence of autoimmunity. Diabetologia. 2008;51(10):1803-1813. doi: https://doi.org/10.1007/s00125-008-1105-x
16. Gourishankar S, Halloran PF. Late deterioration of organ transplants: a problem in injury and homeostasis. Curr Opin Immunol. 2002;14(5):576-583. doi: https://doi.org/10.1016/s0952-7915(02)00386-2
17. Adamska Z, Karczewski M, Cichanska L, et al. Bacterial infections in renal transplant recipients. Transplant Proc. 2015;47(6):1808-1812. doi: https://doi.org/10.1016/j.transproceed.2015.03.046
18. Lim JH, Cho JH, Lee JH, et al. Risk factors for recurrent urinary tract infection in kidney transplant recipients. Transplant Proc. 2013;45(4):1584-1589. doi: https://doi.org/10.1016/j.transproceed.2012.12.011
19. Bodro M, Sanclemente G, Lipperheide I, et al. Impact of urinary tract infections on short-term kidney graft outcome. Clin Microbiol Infect. 2015;21(12):1104.e1-8. doi: https://doi.org/10.1016/j.cmi.2015.07.019
20. Dupont PJ, Psimenou E, Lord R, et al Late recurrent urinary tract infections may produce renal allograft scarring even in the absence of symptoms or vesicoureteric reflux. Transplantation. 2007;84(3):351-355. doi: https://doi.org/10.1097/01.tp.0000275377.09660.fa
21. Chuang P, Parikh CR, Langone A. Urinary tract infections after renal transplantation: a retrospective review at two US transplant centers. Clin Transplant. 2005;19(2):230-235. doi: https://doi.org/10.1111/j.1399-0012.2005.00327.x
22. Alangaden GJ, Thyagarajan R, Gruber SA, et al. Infectious complications after kidney transplantation: current epidemiology and associated risk factors. Clin Transplant. 2006;20(4):401-409. doi: https://doi.org/10.1111/j.1399-0012.2006.00519.x
23. Fioretto P, Steffes MW, Sutherland DE, et al. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med. 1998;339(2):69−75. doi: https://doi.org/10.1056/NEJM199807093390202
24. Kim Y, Shin S, Han D, et al. Long-term effects of pancreas transplantation on diabetic retinopathy and incidence and predictive risk factors for early worsening. Transplantation. 2018;102(1):e30-e38. doi: https://doi.org/10.1097/TP.0000000000001958
25. Tavakoli M, Mitu-Pretorian M, Petropoulos IN, et al. Corneal confocal microscopy detects early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation. Diabetes. 2013;62(1):254-260 doi: https://doi.org/10.2337/db12-0574
26. Lindah JP, Hartmann A, Aakhus S, et al. Long-term cardiovascular outcomes in type 1 diabetic patients after simultaneous pancreas and kidney transplantation compared with living donor kidney transplantation. Diabetologia. 2016;59(4):844-852. doi: https://doi.org/10.1007/s00125-015-3853-8
27. Ceriello A, Ihnat M, Thorpe J. Clinical review 2: The «metabolic memory»: is more than just tight glucose control necessary to prevent diabetic complications? J Clin Endocrinol Metab. 2016;94(2):410-415. doi: https://doi.org/10.1210/jc.2008-1824
28. Yamagishi S, Nakamura N, Suematsu M, et al. Advanced glycation end products: a molecular target for vascular complications in diabetes. Mol Med. 2015;21(Suppl 1):S32-40. doi: https://doi.org/10.2119/molmed.2015.00067
29. Koyama H, Nishizawa Y. AGEs/RAGE in CKD: irreversible metabolic memory road toward CVD? Eur J Clin Invest. 2010;40(7):623-635 doi: https://doi.org/10.1111/j.1365-2362.2010.02298
Supplementary files
|
1. Fig. 1. Graphic representation of the course of the disease of patient N. | |
Subject | ||
Type | Other | |
View
(409KB)
|
Indexing metadata ▾ |
|
2. Fig. 2. Graphic representation of the course of the disease of patient B. | |
Subject | ||
Type | Other | |
View
(423KB)
|
Indexing metadata ▾ |
|
3. Fig. 3. Graphical presentation of the course of the patient's disease Z. | |
Subject | ||
Type | Other | |
View
(382KB)
|
Indexing metadata ▾ |
Review
For citations:
Severina A.S., Larina I.I., Shutovа A.S., Shamkhalova M.S., Dmitriev I.V., Pinchuk A.V., Arzumanov S.V., Shestakova M.V. Simultaneous pancreas‐kidney transplantation in type 1 diabetes mellitus. Clinical options. Diabetes mellitus. 2020;23(3):275-282. (In Russ.) https://doi.org/10.14341/DM12509

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).