Preview

Сахарный диабет

Расширенный поиск

Современные данные об эффективности гликлазида и молекулярные механизмы действия препарата

https://doi.org/10.14341/DM12487

Полный текст:

Аннотация

Учитывая растущую распространенность сахарного диабета 2 типа (СД2), одним из главных вопросов является возможность его лечения доступными препаратами. Несмотря на то что гликемический контроль и уменьшение микро- и макрососудистых осложнений остаются важными аспектами лечения, доступность и стоимость пероральных сахароснижающих препаратов являются основными ограничивающими факторами. И хотя более новые препараты, такие как ингибиторы натриево-глюкозного котранспортера 2, ингибиторы дипептидилпептидазы-4 и агонисты рецепторов глюкагоноподобного пептида 1, имеют преимущества у пациентов с инсулинорезистентностью и сердечно-сосудистыми осложнениями, они относительно дороги и имеют ограниченную доступность. Производные сульфонилмочевины (ПСМ) второго поколения эффективно снижают уровень гликированного гемоглобина, способствуют профилактике микро- и макрососудистых осложнений СД2. В обзоре обосновывается роль гликлазида МВ 60 мг как более доступного препарата для лечения СД2, безопасность которого подтверждена многими исследованиями; показаны кардио-, нефропротективный эффекты, а также разбираются уникальные механизмы влияния препарата на в-клетки поджелудочной железы и экстрапанкреатические эффекты через активацию фосфолипазы С и рецепторы, связанные с G-белком. Представлены последние данные по оценке неблагоприятных явлений гликлазида МВ в сравнении как с другими ПСМ, так и с сахароснижающими препаратами иных классов.

Об авторах

Нина Александровна Петунина
Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский Университет)
Россия

Доктор медицинских наук, профессор, член-корреспондент РАН, eLibrary SPIN: 9784-3616


Конфликт интересов: нет


Ирина Александровна Кузина
Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский Университет)
Россия

eLibrary SPIN: 9008-5886

119435 Москва, ул. Большая Пироговская, д. 2, стр. 4


Конфликт интересов: нет


Людмила Викторовна Недосугова
Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский Университет)
Россия

Доктор медицинских наук, доцент, eLibrary SPIN: 1853-0215


Конфликт интересов:

нет



Список литературы

1. World Health Organization. Guidelines on second- and third-line medicines and type of insulin for the control of blood glucose levels in non-pregnant adults with diabetes mellitus. World Health Organization; 2018. Available from: https://apps.who.int/iris/handle/10665/272433

2. IDF Diabetes Atlas. 9th Edition. Brussels: International Diabetes Federation; 2019. Available from: https://diabetesatlas.org/en/

3. Wu Y, Ding Y, Tanaka Y, Zhang W, Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J MedSci. 2014;11(11):1185-200. doi: https://doi.org/10.7150/ijms.10001

4. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387(10027):1513-1530. doi: https://doi.org/10.1016/S0140-6736(16)00618-8

5. Shrivastava U, Misra A. Need for ethnic-specific guidelines for prevention, diagnosis, and manage- ment of type 2 diabetes in South Asians. Diabetes Technol Ther. 2015;17(6):435-439. doi: https://doi.org/10.1089/dia.2014.0213

6. Shrivastava U, Misra A, Gupta R, Viswanathan V. Socioeconomic factors relating to diabetes and its management in India. J Diabetes. 2016;8(1):12-23. doi: https://doi.org/10.1111/1753-0407.12316

7. Davies MJ, D’Alessio DA, Fradkin J, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018;41(12):2669-2701. doi: https://doi.org/10.2337/dci18-0033

8. American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S90-102. doi: https://doi.org/10.2337/dc19-S009

9. Libianto R, Ekinci EI. New agents for the treatment of type 2 diabetes. Crit Care Clin. 2019;35(2):315-328. doi: https://doi.org/10.1016Zj.ccc.2018.11.007

10. Rawshani A, Rawshani A, Franzen S, et al. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2018;379(7):633-644. doi: https://doi.org/10.1056/NEJMoa1800256

11. Mohan V, Khunti K, Chan SP et al. Management of type 2 diabetes in developing countries: balancing optimal glycaemic control and outcomes with affordability and accessibility to treatment. Diabetes Ther. 2020;11(1):15-35. doi: https://doi.org/10.1007/s13300-019-00733-9

12. Owolabi MO, Yaria JO, Daivadanam M, et al. Gaps in guidelines for the management of diabetes in low- and middle-income versus high-income countries - a systematic review. Diabetes Care. 2018;41(5):1097-1105. doi: https://doi.org/10.2337/dc17-1795

13. The Lancet Diabetes & Endocrinology. Forging paths to improve diabetes care in low-income settings. Lancet Diabetes Endocrinol. 2017;5(8):565. doi: https://doi.org/10.1016/S2213-8587(17)30230-9

14. Desai U, Kirson NY, Kim J, et al. Time to treatment intensification after monotherapy failure and its association with subsequent glycemic control among 93,515 patients with type 2 diabetes. Diabetes Care. 2018;41(10):2096-2104. doi: https://doi.org/10.2337/dc17-0662

15. Аметов А.С., Черникова Н.А., Кнышенко О.А. Роль и место препаратов сульфонилмочевины в современном управлении сахарным диабетом типа 2 // Эндокринология: Новости. Мнения. Обучение. — 2019. — Т. 8. — №1. — С. 40-48. doi: https://doi.org/10.24411/2304-9529-2019-11005

16. Sola D, Rossi L, Schianca GP et al. Sulfonylureas and their use in clinical practice. Archives of Medical Science. 2015;11(4):840-848. doi: https://doi.org/10.5114/aoms.2015.53304

17. Zhang CL, Katoh M, Shibasaki T, et al. The cAMP sensor Epac2 is a direct target of antidiabetic sulfonylurea drugs. Science. 2009;325(5940):607-610. doi: https://doi.org/10.1126/science.1172256

18. Gloerich M, Bos JL. Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol. 2010;50:355-375. doi: https://doi.org/10.1146/annurev.pharmtox.010909.105714

19. Shibasaki T, Takahashi H, Miki T, et al. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci U S A. 2007;104(49):19333-19338. doi: https://doi.org/10.1073/pnas.0707054104

20. Dzhura I, Chepurny OG, Leech CA, et al. Phospholipase C-e links Epac2 activation to the potentiation of glucose-stimulated insulin secretion from mouse islets of Langerhans. Islets. 2011;3(3):121-128. doi: https://doi.org/10.4161/isl.33.15507

21. Jarrard RE, Wang Y, Salyer AE, et al. Potentiation of sulfonylurea action by an EPAC-selective cAMP analog in INS-1 cells: comparison of tolbutamide and gliclazide and a potential role for EPAC activation of a 2-APB-sensitive Ca2+ influx. Mol Pharmacol. 2013;83(1):191-205. doi: https://doi.org/10.1124/mol.112.081943

22. Takahashi T, Shibasaki T, Takahashi H, et al. Antidiabetic sulfonylureas and cAMP cooperatively activate Epac2A. Sci Signal. 2013;6(298):ra94. doi: https://doi.org/10.1126/scisignal.2004581

23. Yabe D, Seino Y. Dipeptidyl peptidase-4 inhibitors and sulfonylureas for type 2 diabetes: Friend or foe? J Diabetes Investig. 2014;5(5):475-477. doi: https://doi.org/10.1111/jdi.12229

24. Colagiuri S, Matthews D, Leiter LA, et al. The place of gliclazide MR in the evolving type 2 diabetes landscape: a comparison with other sulfonylureas and newer oral antihyperglycemic agents. Diabetes Res Clin Pract. 2018;143:1-14. doi: https://doi.org/10.1016/j.diabres.2018.05.028

25. Hayward RA, Reaven PD, Wiitala WL, et al. Follow- up of glycemic control and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;372(23):2197-2206. doi: https://doi.org/10.1056/NEJMoa1414266

26. Hirst JA, Farmer AJ, Dyar A, et al. Estimating the effect of sulfonylurea on HbA1c in diabetes: a systematic review and meta-analysis. Diabetologia. 2013;56(5):973-984. doi: https://doi.org/10.1007/s00125-013-2856-6

27. Mamza J, Mehta R, Donnelly R, Idris I. Important differences in the durability of glycaemic response among second-line treatment options when added to metformin in type 2 diabetes: a retrospective cohort study. Ann Med. 2016;48(4):224-234. doi: https://doi.org/10.3109/07853890.2016.115726

28. Mohan V, Anjana RM, Ranjit U, et al. Clinical profile of elderly patients (over 90 years) with type 2 diabetes seen at a diabetes centre in South India. Diabetes Technol Ther. 2019;22(2):79-84. doi: https://doi.org/10.1089/dia.2019.0219

29. Nathan DM, Buse JB, Kahn SE, et al. Rationale and design of the glycemia reduction approaches in diabetes: a comparative effectiveness study (GRADE). Diabetes Care. 2013;36(8):2254-2261. doi: https://doi.org/10.2337/dc13-0356

30. Khunti K, Chatterjee S, Gerstein HC, et al. Do sulphonylureas still have a place in clinical practice? Lancet Diabetes Endocrinol. 2018;6(10):821-832. doi: https://doi.org/10.1016/S2213-8587(18)30025-1

31. Simpson SH, Lee J, Choi S, et al. Mortality risk among sulfonylureas: a systematic review and network metaanalysis. Lancet Diabetes Endocrinol. 2015;3(1):43-51. doi: https://doi.org/10.1016/S2213-8587(14)70213-X

32. Palmer SC, Mavridis D, Nicolucci A, et al. Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes: a meta-analysis. JAMA. 2016;316(3):313-324. doi: https://doi.org/10.1001/jama.2016.9400

33. Qian D, Zhang T, Zheng P, et al. Comparison of oral antidiabetic drugs as add-on treatments in patients with type 2 diabetes uncontrolled on metformin: a network meta-analysis. Diabetes Ther. 2018;9(5):1945-1958. doi: https://doi.org/10.1007/s13300-018-0482-5

34. Webb DR, Davies MJ, Jarvis J, et al. The right place for sulphonylureas today. Part of review the series: Implications of recent CVOTs in type 2 diabetes mellitus. Diabetes Res Clin Pract. 2019;157:107836. doi: https://doi.org/10.1016/j.diabres.2019.107836

35. American Diabetes Association. Linagliptin and glimepiride have comparable cardiovascular safety effects in type 2 diabetes at high cardiovascular risk. San Francisco, California; 2019. Available from: http://www.diabetes.org/newsroom/press-releases/2019/linagliptin-and-glimepiride.html

36. Vaccaro O, Masulli M, Nicolucci A, et al. Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with type 2 diabetes inadequately controlled with metformin (TOSCA.IT): a randomised, multicentre trial. Lancet Diabetes Endocrinol. 2017;5(11):887-897. doi: https://doi.org/10.1016/S2213-8587(17)30317-0

37. Perkovic V, Heerspink HL, Chalmers J, et al. Intensive glucose control improves kidney outcomes in patients with type 2 diabetes. Kidney Int. 2013;83(3):517-523. doi: https://doi.org/10.1038/ki.2012.401

38. Navarro G, Xu W, Jacobson DA, et al. Extranuclear actions of the androgen receptor enhance glucose-stimulated insulin secretion in the male. Cell Metab. 2016;23(5):837-851. doi: https://doi.org/10.1016/j.cmet.2016.03.015

39. Blad CC, Tang C, Offermanns S. G protein-coupled receptors for energy metabolites as new therapeutic targets. Nat Rev Drug Discov. 2012;11(8):603-619. doi: https://doi.org/10.1038/nrd3777

40. Marselli L, Thorne J, Dahiya S, et al. Gene expression profiles of beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS One. 2010;5(7):e11499. doi: https://doi.org/10.1371/journal.pone.0011499

41. Jarrard RE, Wang Y, Salyer AE, et al. Potentiation of sulfonylurea action by an EPAC-selective cAMP analog in INS-1 cells: comparison of tolbutamide and gliclazide and a potential role for EPAC activation of a 2-APB-sensitive Ca2+ influx. Mol Pharmacol. 2013;83(1):191-205. doi: https://doi.org/10.1124/mol.112.081943

42. Satoh J, Takahashi K, Takizawa Y, et al. Secondary sulfonylurea failure: comparison of period until insulin treatment between diabetic patients treated with gliclazide and glibenclamide. Diabetes Res Clin Pract. 2005;70(3):291-297. doi: https://doi.org/10.1016/j.diabres.2005.04.002

43. J0rgensen CH, Gislason GH, Andersson C, et al. Effects of oral glucose-lowering drugs on long term outcomes in patients with diabetes mellitus following myocardial infarction not treated with emergent percutaneous coronary intervention - a retrospective nationwide cohort study. Cardiovasc Diabetol. 2010;9:54. doi: https://doi.org/10.1186/1475-2840-9-54

44. Schramm TK, Gislason GH, Vaag A, et al. Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J. 2011;32(15):1900-1908. doi: https://doi.org/10.1093/eurheartj/ehr077

45. Li L, Renier G. The oral anti-diabetic agent, gliclazide, inhibits oxidized LDL-mediated LOX-1 expression, metalloproteinase-9 secretion and apoptosis inhuman aortic endothelial cells. Atherosclerosis. 2009;204(1):40-46. doi: https://doi.org/10.1016/j.atherosclerosis.2008.08.008

46. Renier G, Mamputu JC, Serri O. Benefits of gliclazide in the atherosclerotic process: decrease in monocyte adhesion to endothelial cells. Metabolism. 2003;52(8 Suppl 1):13-18. doi: https://doi.org/10.1016/s0026-0495(03)00212-9

47. Muller G. The molecular mechanism of the insulin-mimetic/ sensitizing activity of the antidiabetic sulfonylurea drug amaryl. Mol Med. 2000;6(11):907-933.

48. Roduguez E, Pulido N, Romero R, et al. Phosphatidylinositol 3-kinase activation is required for sulfonylurea stimulation of glucose transport in rat skeletal muscle. Endocrinology. 2004;145(2):679-185. doi: https://doi.org/10.1210/en.2003-0755

49. Toker A, Cantley LC. Signaling through the lipid products of phospho-inositide-3-OH-kinase. Nature. 1997;387(6634):673-676. doi: https://doi.org/10.1038/42648

50. Pulido N, Romero R, Suarez A, et al. Sulfonylureas stimulate glucose uptake through GLUT4 transporter translocation in rat skeletal muscle. Biochem Biophys Res Commun. 1996;228(2):499-504. doi: https://doi.org/10.1006/bbrc.1996.1689

51. Pulido N, Sua'rez A, Casanova B, et al. Gliclazide treatment of streptozotocin diabetic rats restores GLUT4 protein content and basal glucose uptake in skeletal muscle. Metabolism. 1997;46(12 Suppl 1):10-13. doi: https://doi.org/10.1016/s0026-0495(97)90310-3

52. Sekiya F, Bae YS, Rhee SG. Regulation of phospholipase C isozymes: activation of phospholipase C-y in the absence of tyrosine-phosphorylation. Chem Phys Lipids. 1999;98(1-2):3-11. doi: https://doi.org/10.1016/s0009-3084(99)00013-4

53. Nakamura Y, Fukami K. Regulation and physiological functions of mammalian phospholipase C. J Biochem. 2017;161(4):315-321. doi: https://doi.org/10.1093/jb/mvw094

54. Qiu Y, Ping P, Tang XL, et al. Direct evidence that protein kinase C plays an essential role in the development of late preconditioning against myocardial stunning in conscious rabbits and that is the isoform involved. J Clin Invest. 1998;101(10)2182-2198. doi: https://doi.org/10.1172/JCI1258

55. Liu GS, Cohen MV, Monchly-Rosen D, Downey JM. Protein kinase C-epsilon is responsible for the protection of preconditioning in rabbit cardiomyocyte. J Mol Cell Cardiol. 1999;31(10):1937-1948. doi: https://doi.org/10.1006/jmcc.1999.1026

56. Goffart S, von Kleist-Retzow JC, Wiesner RJ. Regulation of mitochondrial proliferation in the heart: powerplant failure contributes to cardiac failure in hypertrophy. Cardiovasc Res. 2004;64(2):198-207. doi: https://doi.org/10.1016/jcarcliores2004.06.030

57. Ochocka AM, Pawelczyk T. Isozymes 5 of phosphoinositide-specific phospholipase C and their role in signal transduction in the cell. Acta Biochim Pol. 2003;50(4):1097-1110.

58. Brookes PS, Yoon Y, Robotham JL, et al. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 2004;287(4):C817-833. doi: https://doi.org/10.1152/ajpcell.00139.2004

59. Lien YC, Noel T, Liu H, et al. Phospholipase C-delta1 is a critical target for tumor necrosis factor receptor-mediated protection against adriamycin-induced cardiac injury. Cancer Res. 2006;66(8):4329-4338. doi: https://doi.org/10.1158/0008-5472.CAN-05-3424

60. Tappia PS, Asemu G, Aroutiounova N, Dhalla NS. Defective signal transduction of sarcolemmal phospholipase C in diabetic cardiomyopathy. Mol Cell Biochem. 2004;261(1-2):193-199. doi: https://doi.org/10.1023/b:mcbi.0000028756.31782.46

61. Little PJ. GPCR responses in vascular smooth muscle can occur predominantly through dual transactivation of kinase receptors and not classical Gaq protein signalling pathways. Life Sci. 2013;92(20-21):951-956. doi: https://doi.org/10.1016/jJfs.2013.03.017

62. Mikov M, Danic M, Pavlovic N, et al. Potential applications of gliclazide in treating type 1 diabetes mellitus: formulation with bile acids and probiotics. Eur J Drug Metab Pharmacokinet. 2018;43(3):269-280. doi: https://doi.org/10.1007/s13318-017-0441-y

63. Pollack RM, Donath MY, LeRoith D, Leibowitz G. Antiinflammatory agents in the treatment of diabetes and its vascular complications. Diabetes Care. 2016;39(2):S244-252. doi: https://doi.org/10.2337/dcS15-3015

64. Burgos-Moron E, Abad-Jimenez Z, Maranon AM, et al. Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: the battle continues. J Clin Med. 2019;8(9):1385. doi: https://doi.org/10.3390/jcm8091385

65. Недосугова Л.В. Роль препаратов сульфонилмочевины в развитии сердечно-сосудистых осложнений при сахарном диабете 2 типа // Сахарный диабет. — 2013. — №2. — С. 26-35. doi: https://doi.org/10.14341/2072-0351-3753

66. Choi SW, Ho CK. Antioxidant properties of drugs used in Type 2 diabetes management: could they contribute to, confound or conceal effects of antioxidant therapy? Redox Rep. 2018;23(1):1-24. doi: https://doi.org/10.1080/13510002.2017.1324381

67. Ghoshal K, Bhattacharyya M. Overview of platelet physiology: its hemostatic and nonhemostatic role in disease pathogenesis. Scientific World J. 2014;2014:781857. doi: https://doi.org/10.1155/2014/781857

68. Дедов И.И., Шестакова М.В., Майоров А.Ю., и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом / Под ред. И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. 9-й вып. // Сахарный диабет. — 2019. — Т. 22. — №S1-1. — C. 1-144. doi: https://doi.org/10.14341/DM221S1

69. Kalra S, Khandelwal D. Modern sulfonylureas strike back - exploring the freedom of flexibility. Eur Endocrinol. 2018;14(2):20-22. doi: https://doi.org/10.17925/EE.2018.14.220

70. Schrijnders D, Kleefstra N, Landman GW. Within-class differences of the sulfonylureas should be accounted for. Diabetologia. 2015;58(6):1374-1375. doi: https://doi.org/10.1007/s00125-015-3556-1

71. Raju A, Shetty S, Cai B, D’Souza AO. Hypoglycemia incidence rates and associated health care costs in patients with type 2 diabetes mellitus treated with second-line linagliptin or sulfonylurea after metformin monotherapy. J Manag Care Spec Pharm. 2016;22(5):483-492. doi: https://doi.org/10.18553/jmcp.2016.22.5483

72. Goto A, Arah OA, Goto M, et al. Severe hypoglycaemia and cardiovascular disease: systematic review and meta-analysis with bias analysis. BMJ. 2013;347:f4533. doi: https://doi.org/10.1136/bmj.f4533

73. Kalra S, Aamir AH, Raza A, et al. Place of sulfonylureas in the management of type 2 diabetes mellitus in South Asia: a consensus statement. Indian J Endocrinol Metab. 2015;19(5):577-596. doi: https://doi.org/10.4103/2230-8210.163171

74. Douros A, Yin H, Yu OHY, et al. Pharmacologic differences of sulfonylureas and the risk of adverse cardiovascular and hypoglycemic events. Diabetes Care. 2017;40(11):1506-1513. doi: https://doi.org/10.2337/dc17-0595

75. Ohkuma T, Zoungas S, Jun M, et al. Intensive glucose-lowering and the risk of vascular events and premature death in patients with decreased kidney function: the ADVANCE trial. Diabetes Obes Metab. 2020;22(3):452-457. doi: https://doi.org/10.1111/dom.13878

76. Maloney A, Rosenstock J, Fonseca V. A model-based meta-analysis of 24 antihyperglycemic drugs for type 2 diabetes: comparison of treatment effects at therapeutic doses. Clin Pharmacol Ther. 2019;105(5):1213-1223. doi: https://doi.org/10.1002/cpt.1307

77. Del Prato S, Nauck M, Duran-Garcia S, et al. Long-term glycemic response and tolerability of dapagliflozin versus a sulphonylurea as add-on therapy to metformin in patients with type 2 diabetes: 4-year data. Diabetes Obes Metab. 2015;17(6):581-590. doi: https://doi.org/10.1111/dom.12459

78. CADTH Therapeutic Review. New drugs for type 2 diabetes: second-line therapy - science report. Therapeutic Review. 2017;4(1b):401. Available from: https://cadth.ca/sites/default/files/pdf/TR0012_T2D_Science_Report.pdf

79. Genere N, Montori VM. Review: Newer second-line drugs for diabetes are not more cost-effective than sulfonylureas. Ann Intern Med. 2018;168(2):JC8. doi: https://doi.org/10.7326/ACPJC-2018-168-2-008

80. Roglic G, Norris SL. Medicines for treatment intensification in type 2 diabetes and type of insulin in type 1 and type 2 diabetes in low-resource settings: synopsis of the World Health Organization guidelines on second- and third-line medicines and type of insulin for the control of blood glucose levels in nonpregnant adults with diabetes mellitus. Ann Intern Med. 2018;169(6):394-397. doi: https://doi.org/10.7326/M18-1149

81. American Diabetes Association. Pharmacologic аpproaches to glycemic treatment: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(1):S98-S110. doi: https://doi.org/10.2337/dc20-S009

82. World Health Organization. WHO model list of essential medicines. 20th list. 2017. 67 р. Available from: https://www.who.int/medicines/publications/essentialmedicines/20th_EML2017.pdf


Дополнительные файлы

Для цитирования:


Петунина Н.А., Кузина И.А., Недосугова Л.В. Современные данные об эффективности гликлазида и молекулярные механизмы действия препарата. Сахарный диабет. 2020;23(4):357-367. https://doi.org/10.14341/DM12487

For citation:


Petunina N.A., Kuzina I.A., Nedosugova L.V. Current data on the effectiveness of gliclazide and molecular mechanisms of action of the drug. Diabetes mellitus. 2020;23(4):357-367. (In Russ.) https://doi.org/10.14341/DM12487

Просмотров: 1287


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)