Molecular genetic features of the diabetes mellitus development and the possibility of precision therapy
https://doi.org/10.14341/DM12486
Abstract
The purpose of this review is to analyze existing data on the molecular genetic features of the development of type 1 and type 2 diabetes mellitus, gestational diabetes and specific types of diabetes (maturity onset of diabetes of the young, neоnatal diabetes) and to assess the possibility of precision therapy.
The etiology of diabetes is heterogeneous, and a genetic predisposition plays a significant role in its development. Genetic studies, conducted in the past few decades, allow us to identify a number of genes that directly affect the development of diabetes. The genetic prerequisites indicate high levels of predictability for the occurrence of type 1 diabetes. The only personalized treatment that is known to date for such patients is insulin therapy. For monogenic specific types of diabetes, genetic testing is a diagnostic factor which allows to prescribe adequate therapy. The molecular genetic characteristics of the development of type 2 diabetes and gestational diabetes are very complex and ambiguous, however, the existing rich data will become the basis for future recommendations for the prevention, diagnosis and personalized treatment.
About the Authors
Tatyana Yu. DemidovaRussian Federation
MD, PhD, Professor
eLibrary SPIN: 9600-9796
4/1, Shkuleva str., 109263 Moscow
Svetlana G. Zenina
Russian Federation
MD, assistant
eLibrary SPIN: 7327-6450
4/1, Shkuleva str., 109263 Moscow
References
1. Chiang JL, Kirkman MS, Laffel LMB, Peters AL. Type 1 Diabetes Through the Life Span: A Position Statement of the American Diabetes Association. Diabetes Care. 2014;37(7):2034-2054. https://doi.org/10.2337/dc14-1140
2. Pociot F, Akolkar B, Concannon P, et al. Genetics of Type 1 Diabetes: What’s Next? Diabetes. 2010;59(7):1561-1571. https://doi.org/10.2337/db10-0076
3. Titovich EV, Kuraeva TL, Prokofi v SA. et al. HLA haplotypes, autoantibodies to β-cells: their role in predicting type 1 diabetes (results of an 11-year follow-up). Diabetes Mellitus. 2010;13(4):12-17 (In Russ.). https://doi.org/10.14341/2072-0351-6051
4. Kuraeva TL, Zilberman LI, Titovich EV, Peterkova VA. Genetics of monogenic forms of diabetes mellitus. Sakharnyi diabet. 2011;14(1):20-27. (In Russ.). https://doi.org/10.14341/2072-0351-6246
5. Petrone A, Spoletini M, Zampetti S, et al. The PTPN22 1858T Gene Variant in Type 1 Diabetes Is Associated With Reduced Residual -Cell Function and Worse Metabolic Control. Diabetes Care. 2008;31(6):1214-1218. https://doi.org/10.2337/dc07-1158
6. Peterkova VA, Kuraeva TL, Prokofi v SA, et al. Molecular genetics and clinical features of monogenic forms of diabetes. Vestnik RAMN. 2012;67(1):81-86. (In Russ.). https://doi.org/10.15690/vramn.v67i1.115
7. Hattersley A, Bruining J, Shield J, et al. The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 2009;10:33-42. https://doi.org/10.1111/j.1399-5448.2009.00571.x
8. Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, Ellard S. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia. 2010;53(12):2504-2508. https://doi.org/10.1007/s00125-010-1799-4
9. Hattersley AT, Patel KA. Precision diabetes: learning from monogenic diabetes. Diabetologia. 2017;60(5):769-777. https://doi.org/10.1007/s00125-017-4226-2
10. Ješić MD, Sajić S, Ješić MM, Maringa M, Micić D, Necić S. A case of new mutation in maturity-onset diabetes of the young type 3 (MODY 3) responsive to a low dose of sulphonylurea. Diabetes Res Clin Pract. 2008;81(1):e1-e3. https://doi.org/10.1016/j.diabres.2008.03.005
11. Kleinberger JW, Pollin TI. Personalized medicine in diabetes mellitus: current opportunities and future prospects. Ann N Y Acad Sci. 2015;1346(1):45-56. https://doi.org/10.1111/nyas.12757
12. Ajjan RA, Owen KR. Glucokinase MODY and Implications for Treatment Goals of Common Forms of Diabetes. Curr Diab Rep. 2014;14(12):559. https://doi.org/10.1007/s11892-014-0559-0
13. Shehadeh N, Bakri D, Njolstad PR, Gershoni-Baruch R. Clinical characteristics of mutation carriers in a large family with glucokinase diabetes (MODY2). Diabet Med. 2005;22(8):994-998. https://doi.org/10.1111/j.1464-5491.2005.01555.x
14. Flanagan SE, Clauin S, Bellanné-Chantelot C, et al. Update of mutations in the genes encoding the pancreatic beta-cell K ATP channel subunits Kir6.2 ( KCNJ11 ) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat. 2009;30(2):170-180. https://doi.org/10.1002/humu.20838
15. Dupont J, Pereira C, Medeira A, et al. Permanent neonatal diabetes mellitus due to KCNJ11 mutation in a Portuguese family: transition from insulin to oral sulfonylureas. J Pediatr Endocrinol Metab. 2012;25(3-4). https://doi.org/10.1515/jpem-2011-0191
16. Ellard S, Lango Allen H, De Franco E, et al. Improved genetic testing for monogenic diabetes using targeted nextgeneration sequencing. Diabetologia. 2013;56(9):1958-1963. https://doi.org/10.1007/s00125-013-2962-5
17. American Diabetes Association. 2. Classification and Diagnosis of Diabetes. Diabetes Care. 2015;38(Supplement_1):S8-S16. https://doi.org/10.2337/dc15-S005
18. Lyssenko V, Groop L, Prasad RB. Genetics of Type 2 Diabetes: It Matters From Which Parent We Inherit the Risk. Rev Diabet Stud. 2015;12(3-4):233-242. https://doi.org/10.1900/RDS.2015.12.233
19. Lyssenko V, Nagorny CLF, Erdos MR, et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet. 2009;41(1):82-88. https://doi.org/10.1038/ng.288
20. Boesgaard TW, Grarup N, Jørgensen T, et al. Variants at DGKB/TMEM195, ADRA2A, GLIS3 and C2CD4B loci are associated with reduced glucose-stimulated beta cell function in middleaged Danish people. Diabetologia. 2010;53(8):1647-1655. https://doi.org/10.1007/s00125-010-1753-5
21. Nielsen T, Sparsø T, Grarup N, et al. Type 2 diabetes risk allele near CENTD2 is associated with decreased glucosestimulated insulin release. Diabetologia. 2011;54(5):1052-1056. https://doi.org/10.1007/s00125-011-2054-3
22. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nature Genetics. 2007;39(6):770-775. https://doi.org/10.1038/ng2043
23. Voight BF, Scott LJ, Steinthorsdottir V, et al. Twelve type 2 diabetes susceptibility loci identified through largescale association analysis. Nat Genet. 2010;42(7):579-589. https://doi.org/10.1038/ng.609
24. Bondar IA, Shabelnikova OYu. Genetic basis of type 2 diabetes mellitus. Diabetes mellitus. 2013;16(4):11-16 (In Russ.). https://doi.org/10.14341/DM2013411-16
25. Grant SFA. The TCF7L2 Locus: A Genetic Window Into the Pathogenesis of Type 1 and Type 2 Diabetes. Diabetes Care. 2019;42(9):1624-1629. https://doi.org/10.2337/dci19-0001
26. Yi F, Sun J, Lim GE, et al. Cross Talk between the Insulin and Wnt Signaling Pathways: Evidence from Intestinal Endocrine L Cells. Endocrinology. 2008;149(5):2341-2351. https://doi.org/10.1210/en.2007-1142
27. Ametov AS, Kamynina LL, Akhmedova ZG. Clinical aspects of the effectiveness of incretin therapy (wntpathogenetic pathway and TCF7L2 gene polymorphism). Russian medical journal. 2016;22(1):47-51. (In Russ.). https://doi.org/10.18821/0869-2106-2016-22-1-47-51
28. Ip W, Shao W, Chiang YA, Jin T. The Wnt signaling pathway effector TCF7L2 is upregulated by insulin and represses hepatic gluconeogenesis. Am J Physiol Metab. 2012;303(9):E1166-E1176. https://doi.org/10.1152/ajpendo.00249.2012
29. Yi F, Brubaker PL, Jin T. TCF-4 Mediates Cell Type-specific Regulation of Proglucagon Gene Expression by β-Catenin and Glycogen Synthase Kinase-3β. J Biol Chem. 2005;280(2):1457-1464. https://doi.org/10.1074/jbc.M411487200
30. Franks PW, Poveda A. Lifestyle and precision diabetes medicine: will genomics help optimise the prediction, prevention and treatment of type 2 diabetes through lifestyle therapy? Diabetologia. 2017;60(5):784-792. https://doi.org/10.1007/s00125-017-4207-5
31. American Diabetes Association. Standards of Medical Care in Diabetes-2014. Diabetes Care. 2014;37(Supplement_1):S14-S80. https://doi.org/10.2337/dc14-S014.
32. Florez JC, Jablonski KA, Bayley N, et al. TCF7L2 Polymorphisms and Progression to Diabetes in the Diabetes Prevention Program. N Engl J Med. 2006;355(3):241-250. https://doi.org/10.1056/NEJMoa062418
33. Franks PW. Gene × Environment Interactions in Type 2 Diabetes. Curr Diab Rep. 2011;11(6):552-561. https://doi.org/10.1007/s11892-011-0224-9
34. Franks PW, Pearson E, Florez JC. Gene-Environment and Gene-Treatment Interactions in Type 2 Diabetes: Progress, pitfalls, and prospects. Diabetes Care. 2013;36(5):1413-1421. https://doi.org/10.2337/dc12-2211
35. Florez JC. Pharmacogenetics in type 2 diabetes: precision medicine or discovery tool? Diabetologia. 2017;60(5):800-807. https://doi.org/10.1007/s00125-017-4227-1
36. Zhou K, Yee SW, Seiser EL, et al. Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat Genet. 2016;48(9):1055-1059. https://doi.org/10.1038/ng.3632
37. Engelbrechtsen L, Andersson E, Roepstorff S, et al. Pharmacogenetics and individual responses to treatment of hyperglycemia in type 2 diabetes. Pharmacogenet Genomics. 2015;25(10):475-484. https://doi.org/10.1097/FPC.0000000000000160
38. Franks PW, Pearson E, Florez JC. Gene-environment and genetreatment interactions in type 2 diabetes: Progress, pitfalls, and prospects. Diabetes Care. 2013. https://doi.org/10.2337/dc12-2211
39. Zeevi D, Korem T, Zmora N, et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell. 2015;163(5):1079-1094. https://doi.org/10.1016/j.cell.2015.11.001
40. Wang T, Heianza Y, Sun D, et al. Improving adherence to healthy dietary patterns, genetic risk, and long term weight gain: gene-diet interaction analysis in two prospective cohort studies. BMJ. January 2018:j5644. https://doi.org/10.1136/bmj.j5644
41. Qi Q, Chu AY, Kang JH, et al. Sugar-Sweetened Beverages and Genetic Risk of Obesity. N Engl J Med. 2012;367(15):1387-1396. https://doi.org/10.1056/NEJMoa1203039
42. Ingelsson E, McCarthy MI. Human Genetics of Obesity and Type 2 Diabetes Mellitus. Circ Genomic Precis Med. 2018;11(6). https://doi.org/10.1161/CIRCGEN.118.002090
43. Ashley EA. Towards precision medicine. Nat Rev Genet. 2016;17(9):507-522. https://doi.org/10.1038/nrg.2016.86
44. Sagen JV, Raeder H, Hathout E, et al. Permanent Neonatal Diabetes due to Mutations in KCNJ11 Encoding Kir6.2: Patient Characteristics and Initial Response to Sulfonylurea Therapy. Diabetes. 2004;53(10):2713-2718. https://doi.org/10.2337/diabetes.53.10.2713
45. Mannino GC, Andreozzi F, Sesti G. Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine. Diabetes Metab Res Rev. 2019;35(3):e3109. https://doi.org/10.1002/dmrr.3109
46. McCarthy MI, Abecasis GR, Cardon LR, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9(5):356-369. https://doi.org/10.1038/nrg2344
47. Gaulton KJ, Ferreira T, Lee Y, et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet. 2015. https://doi.org/10.1038/ng.3437
48. Demidova TYu, Ushanova FO. Pathophysiological aspects of the development of gestational diabetes. Russian Medical Journa 2019;10(II):86-920 (In Russ.).
Supplementary files
Review
For citations:
Demidova T.Yu., Zenina S.G. Molecular genetic features of the diabetes mellitus development and the possibility of precision therapy. Diabetes mellitus. 2020;23(5):467-474. (In Russ.) https://doi.org/10.14341/DM12486

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).