Spontaneous and induced secretion of the pro-inflammatory and anti-inflammatory cytokines in patients with type 2 diabetes mellitus and diabetic foot syndrome
https://doi.org/10.14341/DM12343
Abstract
AIMS: Investigation of spontaneous and induced secretion of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and the anti-inflammatory chemokine C-C Motif Chemokine Ligand 18 (CCL18) by monocytes isolated from blood of patients with long-term type 2 diabetes mellitus (T2DM), both with or without foot ulcers and the effect of the course use of the combined metabolic drug Kokarnit as part of complex therapy on the dynamics of the severity of symptoms of DSPN and the cytokine phenotype in patients with long-term non-healing ulcers of the lower extremities
MATERIALS AND METHODS: 121 patients with T2DM, 79 without diabetic foot syndrome (DFS) and 42 patients with DFS were included. CD14+ monocytes were isolated from patients’ blood and stimulated by interferon-γ (IFN-γ) and interleukine-4 (IL-4) for induction of pro- and anti-inflammatory monocyte activation, respectively. The concentrations of TNF-α and CCL18 in the culture medium were measured using ELISA on day 1 and day 6 after cell stimulation in all patients before taking the combined metabolic drug Kokarnit. Then they were randomly allocated either to the control group (57 people), to whom Kokarnit was added to standard treatment, or to the comparison group. After a 9-day course of application of Kokarnit, the dynamics of indicators was evaluated on a TSS scale. Assessment of cytokine status was carried out in 18 people with long-term non-healing ulcerative defects of the lower extremities, on the first and ninth day of treatment.
RESULTS: A correlation was found between HbA1c and levels of stimulated secretion of TNFα (r=0.726, p=0.027), CCL18 (r=-0.949, p=0.051) in patients with DSPN. In all patients with different duration of VDS, an increase in secretion of TNF-α and CCL18 was observed (p<0.05). However, stimulation of anti-inflammatory activation was not observed in patients with ulcerative defects lasting more than 6 months (p=0.033). The use of cocarnit in these patients had a decrease in stimulated secretion of TNFα and an increase in CCL18. Throughout the entire observation period with the therapy, the score for the symptoms of polyneuropathy on the TSS scale in patients of the control group was statistically significantly higher.
CONCLUSION: Against the background of therapy in patients of the main group, a statistically significant dynamics of indicators on the TSS scale was established. The cytokine modulating ability of Kokarnit to switch the cytokine status into the category of anti-inflammatory.
About the Authors
E. V. ShikhRussian Federation
MD, PhD, Professor
N. A. Petunina
Russian Federation
MD, PhD, Professor
L. V. Nedosugova
Russian Federation
MD, PhD, Professor
K. O. Galstyan
Russian Federation
MD
K. I. Kolmychkova
Russian Federation
senior assistant
A. A. Makhova
Russian Federation
MD, PhD, associate professor
Galin I. Gorodetskaya
Russian Federation
senior analyst, assistant
References
1. International Diabetes Federation. IDF Diabetes Atlas 9th edition. Brussels: Belgium; 2019.
2. Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5(1):41. doi: 10.1038/s41572-019-0092-1
3. Гурьева И.В., Светлова О.В., Хлопина Х.М. Болевая диабетическая нейропатия: влияние «гипергликемической памяти» на патогенетические подходы к лечению // Русский медицинский журнал. — 2013. — №0. Специальный выпуск. Болевой синдром. — С. 27. [Gur’yeva IV, Svetlova OV, Khlopina KhM. Bolevaya diabeticheskaya neyropatiya: vliyaniye «giperglikemicheskoy pamyati» na patogeneticheskiye podkhody k lecheniyu. Russkii meditsinskii zhurnal. 2013;(0; Special issue):27. (In Russ.)]
4. Lotfy M, Adeghate J, Kalasz H, et al. Chronic complications of diabetes mellitus: A mini review. Curr Diabetes Rev. 2017;13(1):3–10. doi: https://doi.org/10.2174/1573399812666151016101622
5. Ланкин В.З., Тихазе А.К., Беленков Ю.Н. Свободно-радикальные процессы при заболеваниях сердечно-сосудистой системы // Кардиология. — 2000. — Т. 40. — №7. — С. 48–61. [Lankin VZ, Tikhaze AK, Belenkov YuN. Free radical processes in diseases of the cardiovascular system. Cardiology. 2000;40(7):48–61. (In Russ).]
6. Собенин И.А. Принципы патогенетической терапии атеросклероза. Использование клеточных моделей: Автореф. дис. … докт. мед. наук. — М., 2006. — 48 с. [Sobenin IA. Printsipy patogeneticheskoy terapii ateroskleroza. Ispol’zovaniye kletochnykh modeley. [dissertation abstract] Moscow; 2006. 48 р. (In Russ).] Доступно по: https://search.rsl.ru/ru/record/01003261829. Ссылка активна на 14.03.2020.
7. Ley K, Miller YI, Hedrick CC. Monocyte and macrophage dynamics during atherogenesis. Arterioscler Thromb Vasc Biol. 2011;31(7):1506–1516. doi: https://doi.org/1161/ATVBAHA.110.221127
8. Shin RH, Wang CY, Yang CM. NF-kappaB signaling pathways in neurological inflammation: a mini review. Front Mol Neurosci. 2015;8:77. doi: https://doi.org/10.3389/fnmol.2015.00077
9. Evans JL, Goldfine ID, Maddux BA. Oxidative stress and stress-activated signaling pathways: а unifying hypothesis of Type 2 Diabetes. Endocr Rev. 2002;23(5):599–622. doi: https://doi.org/10.1210/er.2001-0039
10. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604. doi: https://doi.org/10.1016/j.immuni.2010.05.007
11. Jain N, Moeller J, Vogel V. Mechanobiology of macrophages: how physical factors coregulate macrophage plasticity and phagocytosis. Ann Rev Biomed Eng. 2019;21:267–297. doi: https://doi.org/10.1146/annurev-bioeng-062117-121224
12. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Investig. 2005;115(5):1111–1119. doi: https://doi.org/10.1172/JCI200525102
13. Miao M, Niu Y, Xie T, et al. Diabetes-impaired wound healing and altered macrophage activation: a possible pathophysiologic correlation. Wound Repair Regen. 2012;20(2):203–213. doi: https://doi.org/10.1111/j.1524-475X.2012.00772.x
14. Negi G, Kumar A, Joshi RP, et al. Oxidative stress and diabetic neuropathy: current status of antioxidants. IIAOB Journal. 2011;2(6):71–78.
15. Nikiforov NG, Galstyan KO, Nedosugova LV, et al. Proinflammatory monocyte polarization in type 2 diabetes mellitus and coronary heart disease. Vessel Plus 2017;1:192–195. https://doi.org/10.20517/2574-1209.2017.21
16. Mirza RE, Fang MM, Weinheimer-Haus EM, et al. Sustained inflammasome activity in macrophages impairs wound healing in Type 2 diabetic humans and mice. Diabetes. 2014;63(3):1103–1114. doi: https://doi.org/10.2337/db13-0927
17. MacLeod AS, Mansbridge JN. The innate immune system in acute and chronic wounds. Adv Wound Care (New Rochelle). 2016;5(2):65–78. doi: https://doi.org/10.1089/wound.2014.0608
18. Mantovani A, Biswas SK, Galdiero MR. Macrophage plasticity and polarization in tissue repair and remodeling. Journal Pathol. 2013;229(2):176-185. doi: https://doi.org/10.1002/path.4133
19. Mallik SB, Jayashree BS, Shenoy RR. Epigenetic modulation of macrophage activation-perspectives in diabetic wounds. J Diabetes Complicat. 2018;32(5):524–530. doi: https://doi.org/10.1016/j.jdiacomp.2018.01.015
20. Nedeljkovi´c P, Zmijanjac D, Draškovi´c-Pavlovi´c B, et al. Vitamin B complex treatment improves motor nerve regeneration and recovery of muscle function in a rodent model of peripheral nerve injury. Arch Biol Sci. 2017;69(2):361–368. https://doi.org/10.2298/abs160320114n
21. Altun I, Kurutas EB. Vitamin B complex and vitamin B12 levels after peripheral nerve injury. Neural Regen Res. 2016;11(5):842–845. doi: https://doi.org/10.4103/1673-5374.177150
22. Ehmedah A, Nedeljkovic P, Dacic S, et al. Vitamin B complex treatment attenuates local inflammation after peripheral nerve injury. Molecules. 2019;24(24):4615. doi: https://doi.org/10.3390/molecules24244615
23. Shen C-C, Huang H-M, Ou H-C, et al. Protective effect of nicotinamide on neuronal cells under oxygen and glucose deprivation and hypoxia/reoxygenation. Biomed Sci. 2004; 11(4):472–481. doi: https://doi.org/10.1007/BF02256096
24. Stevens MJ, Li F, Drel VR, et al. Nicotinamide reverses neurological and neurovascular deficits in streptozotocin diabetic rats. J Pharmacol Exp Ther. 2007;320(1):458−464. doi: https://doi.org/10.1124/jpet.106.109702
25. Raj V, Ojha S, Howarth FC, et al. Therapeutic potential of benfotiamine and its molecular targets. Eur Rev Med Pharmacol Sci. 2018;22(10):3261−3273. doi: https://doi.org/10.26355/eurrev_201805_15089
26. Birch CS, Brasch NE, McCaddon A, Williams JH. A novel role for vitamin B(12): Cobalamins are intracellular antioxidants in vitro. Free RadicBiol Med. 2009;47(2):184−188. doi: https://doi.org/10.1016/j.freeradbiomed.2009.04.023
27. Burnstock G, Khakh BS. The double life of ATP. Sci Am. 2009;301(6):84–92. doi: https://doi.org/10.1038/scientificamerican1209-84
28. Котов С.В., Исакова Е.В., Лиждвой В.Ю., и др. Эффективность препарата кокарнит при диабетической нейропатии // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2018. — Т. 118. — №1. — С. 37–42. [Kotov SV, Isakova EV, Leidvoll VYu, et al. The efficacy of cocarnit in diabetic neuropathy. J S.S. Korsakov Journal of Neurology and Psychiatry. 2018;118(1):37–42. (In Russ).] doi: https://doi.org/10.17116/jnevro20181181137-42
29. Гацких И.В., Брикман И.Н., Газенкампф К.А., и др. Динамика неврологических нарушений на фоне комбинированной терапии у больных сахарным диабетом 2-го типа // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2018. — Т. 118. — №6. — С. 31–36. [Gatskikh IV, Brickman IN, Gazenkampf KA, et al. Dynamics of neurological disorders during combination therapy in patients with type 2 diabetes. J S.S. Korsakov Journal of Neurology and Psychiatry. 2018;118(6):31–36. (In Russ).] doi: https://doi.org/10.17116/jnevro20181186131
30. Gensel JC, Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res. 2015;1619:1−11. doi: https://doi.org/10.1016/j.brainres.2014.12.045
Supplementary files
|
1. Fig. 1. Dependence of basal TNFa level on the level of glycated hemoglobin. | |
Subject | ||
Type | Other | |
View
(81KB)
|
Indexing metadata ▾ |
|
2. Fig. 2. Proinflammatory activation of TNF-α cytokine and anti-inflammatory activation of ccl18 chemokine in patients with diabetic foot syndrome (n=42) with varying duration of the ulcerative process (from <1 to ≥ 6 months). Twelve patients with a duration of less than 1 month, 17 patients with a duration of 1 to less than 6 months, and 13 patients with a duration of ulcer duration of more than 6 months. Histograms show the average values, and whiskers reflect IQR [Q25; Q75]. The significance level was calculated using Kolmogorov–Smirnov and Mann–Whitney tests, *p<0.05. | |
Subject | ||
Type | Other | |
View
(142KB)
|
Indexing metadata ▾ |
|
3. Fig. 3. Pro-Inflammatory activation of TNF-α cytokine and anti-inflammatory activation of ccl18 chemokine in patients with long-term ulcerative process of diabetic foot syndrome (n=18). Histograms show the average values, and whiskers reflect IQR [Q25; Q75]. The significance level was calculated using Kolmogorov–Smirnov and Mann–Whitney tests, *p<0.05. | |
Subject | ||
Type | Other | |
View
(137KB)
|
Indexing metadata ▾ |
Review
For citations:
Shikh E.V., Petunina N.A., Nedosugova L.V., Galstyan K.O., Kolmychkova K.I., Makhova A.A., Gorodetskaya G.I. Spontaneous and induced secretion of the pro-inflammatory and anti-inflammatory cytokines in patients with type 2 diabetes mellitus and diabetic foot syndrome. Diabetes mellitus. 2020;23(3):210-222. (In Russ.) https://doi.org/10.14341/DM12343

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).