Preview

Сахарный диабет

Расширенный поиск

Фактор транскрипции 7 (TCF7L2): фактор риска развития сахарного диабета 2 типа

https://doi.org/10.14341/DM12313

Полный текст:

Аннотация

Влияние генетических факторов на развитие сахарного диабета 2 типа (СД2) крайне многогранно и до сих пор остается одним из главных вопросов диабетологии. В 2006 г. важным шагом в поиске генетических факторов развития СД2 стала идентификация гена TCF7L2, который является важным маркером предрасположенности к СД2 почти у всех этнических групп. Недавние генетические исследования выявили множество новых генов, ассоциированных с повышенным риском развития СД2. Среди этих генов TCF7L2 оказался наиболее многообещающим, связанным с СД2. Генотипы TCF7L2 оказывают влияние на развитие бета-клеток поджелудочной железы и секрецию инсулина, воздействуя на сигнальный путь Wnt. Определенные полиморфизмы гена TCF7L2 увеличивают риск развития СД2, изменяя экспрессию фактора транскрипции (который играет ключевую роль в регуляции уровня глюкозы в крови) в поджелудочной железе. Цель данной статьи — представить всесторонний обзор исследований по ассоциации полиморфизма TCF7L2 с СД2, проведенных в различных этнических группах во всем мире.

Об авторах

A. Jan
Кафедра фармации, университет Пешавара
Пакистан

Пешавар



H. Jan
Кафедра химии, Исламия-колледж
Пакистан

Пешавар



Z. Ullah
Кафедра фармации, университет Пешавара
Пакистан

Пешавар



Список литературы

1. Adeghate E, Schattner P, Dunn E. An Update on the Etiology and Epidemiology of Diabetes Mellitus. Ann N Y Acad Sci. 2006;1084(1):1-29. doi: https://doi.org/10.1196/annals.1372.029

2. Mayor S. Diabetes affects nearly 6% of the world’s adults. BMJ. 2006; 28(1):21-24. https://doi.org/10.1136/bmj.39055.608507.DB

3. Gujral UP, Pradeepa R, Weber MB, et al. Type 2 diabetes in South Asians: similarities and differences with white Caucasian and other populations. Ann N Y Acad Sci. 2013;1281(1):51. doi: https://doi.org/10.1371/journal.pone.0184967

4. Sherin A. National diabetes action plan of Pakistan: need and challenges. Khyber Medical University Journal. 2015;7(1):1-2.

5. Rowley WR, Bezold C, Arikan Y, Byrne E, Krohe S. Diabetes 2030: insights from yesterday, today, and future trends. Population health management. 2017;20(1):6-12. doi: https://doi.org/10.1089/pop.2015.0181

6. Cade WT. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Physical therapy. 2008;88(11):1322-1335. doi: https://doi.org/10.2522/2Fptj.20080008

7. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes care. 2009; 1;32(Supplement 1):S62-S67. doi: https://doi.org/10.2337/2Fdc09-S062

8. Boutayeb A. The double burden of communicable and non-communicable diseases in developing countries. Trans R Soc Trop Med Hyg. 2006;100(3):191-199. doi: https://doi.org/10.1016/j.trstmh.2005.07.021

9. Basit A, Fawwad A, Qureshi H, Shera AS. Prevalence of diabetes, pre-diabetes and associated risk factors: second National Diabetes Survey of Pakistan (NDSP), 2016–2017. BMJ open. 2018;8(8):e020961. doi: http://doi.org/10.1136/bmjopen-2017-020961

10. Elbein SC. Perspective: the search for genes for type 2 diabetes in the post-genome era. Endocrinology. 2002;143(6):2012-8. doi: https://doi.org/10.1210/endo.143.6.8831

11. Bell JI. The double helix in clinical practice. Nature. 2003;421(6921):414-6. doi: https://doi.org/10.1038/nature01402

12. Holtzman NA, Marteau TM. Will genetics revolutionize medicine? N Eng J Med. 2000 ;343(2):141-4. doi: https://doi.org/10.1056/nejm200007133430213

13. Phillips DIW, Tuomilehto J. Can twin studies assess the genetic component in Type 2 (non-insulin-dependent) diabetes mellitus? Diabetologia. 1993;36(5):471-472. doi: https://doi.org/10.1007/BF00402287

14. Cammidge PJ. Diabetes mellitus and heredity. British medical journal. 1928;2(3538):738. doi: https://doi.org/10.1136/2Fbmj.2.3538.738

15. Kaprio J, Tuomilehto J, Koskenvuo M, et al. Can twin studies assess the genetic component in type-2 (non-insulin-dependent) diabetes-mellitus-reply. Diabetologia. 1993;36:472. doi: https://doi.org/10.1007/BF02221682

16. Mueckler M. Family of glucose-transporter genes: implications for glucose homeostasis and diabetes. Diabetes. 1990;39(1):6-11. doi: https://doi.org/10.2337/diacare.39.1.6

17. Gloyn AL, Weedon MN, Owen KR, et al. Large-Scale Association Studies of Variants in Genes Encoding the Pancreatic -Cell KATP Channel Subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) Confirm That the KCNJ11 E23K Variant Is Associated With Type 2 Diabetes. Diabetes. 2003;52(2):568-572. doi: https://doi.org/10.2337/diabetes.52.2.568

18. Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Gen. 2000;26(1):76-80. doi: https://doi.org/10.1038/79216

19. Barroso I, Gurnell M, Crowley VE, et al. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature. 1999;402(6764):880-3. doi: https://doi.org/10.1038/47254

20. Gloyn AL, Pearson ER, Antcliff JF, et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6. 2 and permanent neonatal diabetes. N Eng J Med. 2004;350(18):1838-49.doi

21. Kingsmore SF, Lindquist IE, Mudge J, et al. Genome-wide association studies: progress and potential for drug discovery and development. Nat Rev Drug Discov. 2008;7(3):221-230. doi: https://doi.org/10.1038/nrd2519

22. Frayling TM, Genome–wide association studies provide new insights into type 2 diabetes aetiology. Nat Rev Gen. 2007; 8(9):657-662. doi: https://doi.org/10.1038/nrg2178

23. Kato N. Insights into the genetic basis of type 2 diabetes. J Diabetes Investig. 2013;4(3):233-44. doi: https://doi.org/10.1111/2Fjdi.12067

24. Saxena R, Voight BF, Lyssenko V, et al. Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels. Science (80- ). 2007;316(5829):1331-1336. doi: https://doi.org/10.1126/science.1142358

25. Grant SFA, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38(3):320-323. doi: https://doi.org/10.1038/ng1732

26. Zeggini E, McCarthy MI. TCF7L2: the biggest story in diabetes genetics since HLA? Diabetologia. 2006;50(1):1-4. doi: https://doi.org/10.1007/s00125-006-0507-x

27. Chandak GR, Janipalli CS, Bhaskar S, et al. Common variants in the TCF7L2 gene are strongly associated with type 2 diabetes mellitus in the Indian population. Diabetologia. 2007;50(1):63-67. doi: https://doi.org/10.1007/s00125-006-0502-2

28. Hayashi T, Iwamoto Y, Kaku K, et al. Replication study for the association of TCF7L2 with susceptibility to type 2 diabetes in a Japanese population. Diabetologia. 2007;50(5):980-984. doi: https://doi.org/10.1007/s00125-007-0618-z

29. Horikawa Y, Miyake K, Yasuda K, et al. Replication of Genome-Wide Association Studies of Type 2 Diabetes Susceptibility in Japan. J Clin Endocrinol Metab. 2008;93(8):3136-3141. doi: https://doi.org/10.1210/jc.2008-0452

30. Lehman DM, Hunt KJ, Leach RJ, et al. Haplotypes of Transcription Factor 7–Like 2 ( TCF7L2 ) Gene and Its Upstream Region Are Associated With Type 2 Diabetes and Age of Onset in Mexican Americans. Diabetes. 2007;56(2):389-393. doi: https://doi.org/10.2337/db06-0860

31. Dou H, Ma E, Yin L, et al. The association between gene polymorphism of TCF7L2 and type 2 diabetes in Chinese Han population: a meta-analysis. PloS one. 2013;8(3):e59495. doi: https://doi.org/10.1371/journal.pone.0059495

32. Helgason A, Pálsson S, Thorleifsson G,et al. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Gen. 2007;39(2):218-225. doi: https://doi.org/10.1038/ng1960

33. Florez JC, Jablonski KA, Bayley N, et al. TCF7L2 Polymorphisms and Progression to Diabetes in the Diabetes Prevention Program. N Engl J Med. 2006;355(3):241-250. doi: https://doi.org/10.1056/NEJMoa062418

34. Nobrega MA. TCF7L2 and Glucose Metabolism: Time to Look Beyond the Pancreas. Diabetes. 2013;62(3):706-708. doi: https://doi.org/10.2337/db12-1418

35. Loos RJ, Franks PW, Francis RW,et al. TCF7L2 polymorphisms modulate proinsulin levels and β-cell function in a British Europid population. Diabetes. 2007;56(7):1943-1947. doi: https://doi.org/10.2337/db07-0055

36. Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445(7130):881-885. doi: https://doi.org/10.1038/nature05616

37. Salonen JT, Uimari P, Aalto J-M, et al. Type 2 Diabetes Whole-Genome Association Study in Four Populations: The DiaGen Consortium. Am J Hum Genet. 2007;81(2):338-345. doi: https://doi.org/10.1086/520599

38. Savic D, Ye H, Aneas I, et al. Alterations in TCF7L2 expression define its role as a key regulator of glucose metabolism. Genome Res. 2011;21(9):1417-1425. doi: https://doi.org/10.1101/gr.123745.111

39. Wei L, Xiao Y, Li L, et al. The susceptibility genes in diabetic nephropathy. Kidney Dis (Basel). 2018;4(4):226-37. doi: https://doi.org/10.1159/000492633

40. Prokunina-Olsson L, Welch C, Hansson O, et al. Tissue-specific alternative splicing of TCF7L2. Hum Mol Genet. 2009;18(20):3795-3804. doi: https://doi.org/10.1093/hmg/ddp321

41. Castrop J, van Norren K, Clevers H. A gene family of HMG-box transcription factors with homology to TCF-1. Nucleic Acids Res. 1992;20(3):611. doi: https://doi.org/10.1093/nar/20.3.611

42. Jin T, Liu L. Minireview: The Wnt Signaling Pathway Effector TCF7L2 and Type 2 Diabetes Mellitus. Mol Endocrinol. 2008;22(11):2383-2392. doi: https://doi.org/10.1210/me.2008-0135

43. Migliorini A, Lickert H. Beyond association: A functional role for Tcf7l2 in β-cell development. Mol Metabol. 2015;4(5):365. doi: https://doi.org/10.1016/j.molmet.2015.03.002

44. Nobrega MA. TCF7L2 and glucose metabolism: time to look beyond the pancreas. Diabetes. 2013;62(3):706-708. doi: https://doi.org/10.2337/db12-1418

45. Weedon MN. The importance of TCF7L2. Diabet Med. 2007;24(10):1062-1066. doi: https://doi.org/10.1111/j.1464-5491.2007.02258.x

46. Tam V, Patel N, Turcotte M, et al. Benefits and limitations of genome-wide association studies. Nat Rev Gen. 2019;20(8):467-484. doi: https://doi.org/10.1038/s41576-019-0127-1

47. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Gen. 2005;6(2):95-108. doi: https://doi.org/10.1038/nrg1521

48. Cauchi S, Meyre D, Dina C, et al. Transcription factor TCF7L2 genetic study in the French population: expression in human β-cells and adipose tissue and strong association with type 2 diabetes. Diabetes. 2006;55(10):2903-2908. doi: https://doi.org/10.2337/db06-0474

49. Zeggini E, Weedon MN, Lindgren CM, et al. The Wellcome Trust Case Control Consortium. Replication of genome-wide association signals in UK samples reveals risk loci for Type 2 diabetes. Science. 2007;316:1336-1341. doi: https://doi.org/10.1126/science.1142364

50. Luo Y, Wang H, Han X, et al. Meta-analysis of the association between SNPs in TCF7L2 and type 2 diabetes in East Asian population. Diabet Res Clin Prac. 2009;85(2):139-146. doi: https://doi.org/10.1016/j.diabres.2009.04.024

51. Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316(5829):1341-1345. doi: https://doi.org/10.1126/science.1142382

52. Jin T. Current understanding on role of the Wnt signaling pathway effector TCF7L2 in glucose homeostasis. Endocrin Rev. 2016;37(3):254-277. doi: https://doi.org/10.1210/er.2015-1146

53. Shao W, Wang D, Chiang YT, et al. The Wnt signaling pathway effector TCF7L2 controls gut and brain proglucagon gene expression and glucose homeostasis. Diabetes. 2013;62(3):789-800. doi: https://dx.doi.org/10.2337/2Fdb12-0365

54. Ip W, Chiang YT, Jin T. The involvement of the wnt signaling pathway and TCF7L2 in diabetes mellitus: The current understanding, dispute, and perspective. Cell & Bioscience. 2012;2(1):1-2. doi: https://dx.doi.org/10.1186/2F2045-3701-2-28

55. Liu Z, Habener JF. Wnt signaling in pancreatic islets. The islets of langerhans. 2010:391-419. doi: https://doi.org/10.1007/978-90-481-3271-3_17

56. Ng LF, Kaur P, Bunnag N, et al. WNT signaling in disease. Cells. 2019;8(8):826. doi: https://doi.org/10.3390/cells8080826

57. Mahajan A, Go MJ, Zhang W, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Gen. 2014; 46(3):234-244. doi: https://doi.org/10.1038/ng.2897

58. Hattersley AT. Prime suspect: the TCF7L2 gene and type 2 diabetes risk. J Clin Invest. 2007;117(8):2077-2079. doi: https://doi.org/10.1172/JCI33077

59. Loder MK, Xavier GD, McDonald A, Rutter GA. TCF7L2 controls insulin gene expression and insulin secretion in mature pancreatic β-cells. Biochem Soc Trans. 2008;36(Pt 3):357-359. doi: https://doi.org/10.1042/bst0360357

60. da Silva Xavier G, Loder MK, McDonald A, et al. TCF7L2 regulates late events in insulin secretion from pancreatic islet β-cells. Diabetes. 2009;58(4):894-905. doi: https://doi.org/10.2337/db08-1187

61. Sanghera DK, Blackett PR. Type 2 diabetes genetics: beyond GWAS. J Diabet Metab. 2012;3(198):6948 doi: https://doi.org/10.1038/nrendo.2014.11

62. Hivert MF, Vassy JL, Meigs JB. Susceptibility to type 2 diabetes mellitus—from genes to prevention. Nat Rev Endocrinol. 2014;10(4):198-205. doi: https://doi.org/10.4172/2F2155-6156.1000198


Для цитирования:


Jan A., Jan H., Ullah Z. Фактор транскрипции 7 (TCF7L2): фактор риска развития сахарного диабета 2 типа. Сахарный диабет. 2021;24(4):371-376. https://doi.org/10.14341/DM12313

For citation:


Jan A., Jan H., Ullah Z. Transcription factor 7-like 2 (TCF7L2): a culprit gene in Type 2 Diabetes Mellitus. Diabetes mellitus. 2021;24(4):371-376. https://doi.org/10.14341/DM12313

Просмотров: 196


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)