Фактор транскрипции 7 (TCF7L2): фактор риска развития сахарного диабета 2 типа
https://doi.org/10.14341/DM12313
Аннотация
Влияние генетических факторов на развитие сахарного диабета 2 типа (СД2) крайне многогранно и до сих пор остается одним из главных вопросов диабетологии. В 2006 г. важным шагом в поиске генетических факторов развития СД2 стала идентификация гена TCF7L2, который является важным маркером предрасположенности к СД2 почти у всех этнических групп. Недавние генетические исследования выявили множество новых генов, ассоциированных с повышенным риском развития СД2. Среди этих генов TCF7L2 оказался наиболее многообещающим, связанным с СД2. Генотипы TCF7L2 оказывают влияние на развитие бета-клеток поджелудочной железы и секрецию инсулина, воздействуя на сигнальный путь Wnt. Определенные полиморфизмы гена TCF7L2 увеличивают риск развития СД2, изменяя экспрессию фактора транскрипции (который играет ключевую роль в регуляции уровня глюкозы в крови) в поджелудочной железе. Цель данной статьи — представить всесторонний обзор исследований по ассоциации полиморфизма TCF7L2 с СД2, проведенных в различных этнических группах во всем мире.
Об авторах
A. JanПакистан
Пешавар
H. Jan
Пакистан
Пешавар
Z. Ullah
Пакистан
Пешавар
Список литературы
1. Adeghate E, Schattner P, Dunn E. An Update on the Etiology and Epidemiology of Diabetes Mellitus. Ann N Y Acad Sci. 2006;1084(1):1-29. doi: https://doi.org/10.1196/annals.1372.029
2. Mayor S. Diabetes affects nearly 6% of the world’s adults. BMJ. 2006; 28(1):21-24. https://doi.org/10.1136/bmj.39055.608507.DB
3. Gujral UP, Pradeepa R, Weber MB, et al. Type 2 diabetes in South Asians: similarities and differences with white Caucasian and other populations. Ann N Y Acad Sci. 2013;1281(1):51. doi: https://doi.org/10.1371/journal.pone.0184967
4. Sherin A. National diabetes action plan of Pakistan: need and challenges. Khyber Medical University Journal. 2015;7(1):1-2.
5. Rowley WR, Bezold C, Arikan Y, Byrne E, Krohe S. Diabetes 2030: insights from yesterday, today, and future trends. Population health management. 2017;20(1):6-12. doi: https://doi.org/10.1089/pop.2015.0181
6. Cade WT. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Physical therapy. 2008;88(11):1322-1335. doi: https://doi.org/10.2522/2Fptj.20080008
7. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes care. 2009; 1;32(Supplement 1):S62-S67. doi: https://doi.org/10.2337/2Fdc09-S062
8. Boutayeb A. The double burden of communicable and non-communicable diseases in developing countries. Trans R Soc Trop Med Hyg. 2006;100(3):191-199. doi: https://doi.org/10.1016/j.trstmh.2005.07.021
9. Basit A, Fawwad A, Qureshi H, Shera AS. Prevalence of diabetes, pre-diabetes and associated risk factors: second National Diabetes Survey of Pakistan (NDSP), 2016–2017. BMJ open. 2018;8(8):e020961. doi: http://doi.org/10.1136/bmjopen-2017-020961
10. Elbein SC. Perspective: the search for genes for type 2 diabetes in the post-genome era. Endocrinology. 2002;143(6):2012-8. doi: https://doi.org/10.1210/endo.143.6.8831
11. Bell JI. The double helix in clinical practice. Nature. 2003;421(6921):414-6. doi: https://doi.org/10.1038/nature01402
12. Holtzman NA, Marteau TM. Will genetics revolutionize medicine? N Eng J Med. 2000 ;343(2):141-4. doi: https://doi.org/10.1056/nejm200007133430213
13. Phillips DIW, Tuomilehto J. Can twin studies assess the genetic component in Type 2 (non-insulin-dependent) diabetes mellitus? Diabetologia. 1993;36(5):471-472. doi: https://doi.org/10.1007/BF00402287
14. Cammidge PJ. Diabetes mellitus and heredity. British medical journal. 1928;2(3538):738. doi: https://doi.org/10.1136/2Fbmj.2.3538.738
15. Kaprio J, Tuomilehto J, Koskenvuo M, et al. Can twin studies assess the genetic component in type-2 (non-insulin-dependent) diabetes-mellitus-reply. Diabetologia. 1993;36:472. doi: https://doi.org/10.1007/BF02221682
16. Mueckler M. Family of glucose-transporter genes: implications for glucose homeostasis and diabetes. Diabetes. 1990;39(1):6-11. doi: https://doi.org/10.2337/diacare.39.1.6
17. Gloyn AL, Weedon MN, Owen KR, et al. Large-Scale Association Studies of Variants in Genes Encoding the Pancreatic -Cell KATP Channel Subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) Confirm That the KCNJ11 E23K Variant Is Associated With Type 2 Diabetes. Diabetes. 2003;52(2):568-572. doi: https://doi.org/10.2337/diabetes.52.2.568
18. Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Gen. 2000;26(1):76-80. doi: https://doi.org/10.1038/79216
19. Barroso I, Gurnell M, Crowley VE, et al. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature. 1999;402(6764):880-3. doi: https://doi.org/10.1038/47254
20. Gloyn AL, Pearson ER, Antcliff JF, et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6. 2 and permanent neonatal diabetes. N Eng J Med. 2004;350(18):1838-49.doi
21. Kingsmore SF, Lindquist IE, Mudge J, et al. Genome-wide association studies: progress and potential for drug discovery and development. Nat Rev Drug Discov. 2008;7(3):221-230. doi: https://doi.org/10.1038/nrd2519
22. Frayling TM, Genome–wide association studies provide new insights into type 2 diabetes aetiology. Nat Rev Gen. 2007; 8(9):657-662. doi: https://doi.org/10.1038/nrg2178
23. Kato N. Insights into the genetic basis of type 2 diabetes. J Diabetes Investig. 2013;4(3):233-44. doi: https://doi.org/10.1111/2Fjdi.12067
24. Saxena R, Voight BF, Lyssenko V, et al. Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels. Science (80- ). 2007;316(5829):1331-1336. doi: https://doi.org/10.1126/science.1142358
25. Grant SFA, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38(3):320-323. doi: https://doi.org/10.1038/ng1732
26. Zeggini E, McCarthy MI. TCF7L2: the biggest story in diabetes genetics since HLA? Diabetologia. 2006;50(1):1-4. doi: https://doi.org/10.1007/s00125-006-0507-x
27. Chandak GR, Janipalli CS, Bhaskar S, et al. Common variants in the TCF7L2 gene are strongly associated with type 2 diabetes mellitus in the Indian population. Diabetologia. 2007;50(1):63-67. doi: https://doi.org/10.1007/s00125-006-0502-2
28. Hayashi T, Iwamoto Y, Kaku K, et al. Replication study for the association of TCF7L2 with susceptibility to type 2 diabetes in a Japanese population. Diabetologia. 2007;50(5):980-984. doi: https://doi.org/10.1007/s00125-007-0618-z
29. Horikawa Y, Miyake K, Yasuda K, et al. Replication of Genome-Wide Association Studies of Type 2 Diabetes Susceptibility in Japan. J Clin Endocrinol Metab. 2008;93(8):3136-3141. doi: https://doi.org/10.1210/jc.2008-0452
30. Lehman DM, Hunt KJ, Leach RJ, et al. Haplotypes of Transcription Factor 7–Like 2 ( TCF7L2 ) Gene and Its Upstream Region Are Associated With Type 2 Diabetes and Age of Onset in Mexican Americans. Diabetes. 2007;56(2):389-393. doi: https://doi.org/10.2337/db06-0860
31. Dou H, Ma E, Yin L, et al. The association between gene polymorphism of TCF7L2 and type 2 diabetes in Chinese Han population: a meta-analysis. PloS one. 2013;8(3):e59495. doi: https://doi.org/10.1371/journal.pone.0059495
32. Helgason A, Pálsson S, Thorleifsson G,et al. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Gen. 2007;39(2):218-225. doi: https://doi.org/10.1038/ng1960
33. Florez JC, Jablonski KA, Bayley N, et al. TCF7L2 Polymorphisms and Progression to Diabetes in the Diabetes Prevention Program. N Engl J Med. 2006;355(3):241-250. doi: https://doi.org/10.1056/NEJMoa062418
34. Nobrega MA. TCF7L2 and Glucose Metabolism: Time to Look Beyond the Pancreas. Diabetes. 2013;62(3):706-708. doi: https://doi.org/10.2337/db12-1418
35. Loos RJ, Franks PW, Francis RW,et al. TCF7L2 polymorphisms modulate proinsulin levels and β-cell function in a British Europid population. Diabetes. 2007;56(7):1943-1947. doi: https://doi.org/10.2337/db07-0055
36. Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445(7130):881-885. doi: https://doi.org/10.1038/nature05616
37. Salonen JT, Uimari P, Aalto J-M, et al. Type 2 Diabetes Whole-Genome Association Study in Four Populations: The DiaGen Consortium. Am J Hum Genet. 2007;81(2):338-345. doi: https://doi.org/10.1086/520599
38. Savic D, Ye H, Aneas I, et al. Alterations in TCF7L2 expression define its role as a key regulator of glucose metabolism. Genome Res. 2011;21(9):1417-1425. doi: https://doi.org/10.1101/gr.123745.111
39. Wei L, Xiao Y, Li L, et al. The susceptibility genes in diabetic nephropathy. Kidney Dis (Basel). 2018;4(4):226-37. doi: https://doi.org/10.1159/000492633
40. Prokunina-Olsson L, Welch C, Hansson O, et al. Tissue-specific alternative splicing of TCF7L2. Hum Mol Genet. 2009;18(20):3795-3804. doi: https://doi.org/10.1093/hmg/ddp321
41. Castrop J, van Norren K, Clevers H. A gene family of HMG-box transcription factors with homology to TCF-1. Nucleic Acids Res. 1992;20(3):611. doi: https://doi.org/10.1093/nar/20.3.611
42. Jin T, Liu L. Minireview: The Wnt Signaling Pathway Effector TCF7L2 and Type 2 Diabetes Mellitus. Mol Endocrinol. 2008;22(11):2383-2392. doi: https://doi.org/10.1210/me.2008-0135
43. Migliorini A, Lickert H. Beyond association: A functional role for Tcf7l2 in β-cell development. Mol Metabol. 2015;4(5):365. doi: https://doi.org/10.1016/j.molmet.2015.03.002
44. Nobrega MA. TCF7L2 and glucose metabolism: time to look beyond the pancreas. Diabetes. 2013;62(3):706-708. doi: https://doi.org/10.2337/db12-1418
45. Weedon MN. The importance of TCF7L2. Diabet Med. 2007;24(10):1062-1066. doi: https://doi.org/10.1111/j.1464-5491.2007.02258.x
46. Tam V, Patel N, Turcotte M, et al. Benefits and limitations of genome-wide association studies. Nat Rev Gen. 2019;20(8):467-484. doi: https://doi.org/10.1038/s41576-019-0127-1
47. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Gen. 2005;6(2):95-108. doi: https://doi.org/10.1038/nrg1521
48. Cauchi S, Meyre D, Dina C, et al. Transcription factor TCF7L2 genetic study in the French population: expression in human β-cells and adipose tissue and strong association with type 2 diabetes. Diabetes. 2006;55(10):2903-2908. doi: https://doi.org/10.2337/db06-0474
49. Zeggini E, Weedon MN, Lindgren CM, et al. The Wellcome Trust Case Control Consortium. Replication of genome-wide association signals in UK samples reveals risk loci for Type 2 diabetes. Science. 2007;316:1336-1341. doi: https://doi.org/10.1126/science.1142364
50. Luo Y, Wang H, Han X, et al. Meta-analysis of the association between SNPs in TCF7L2 and type 2 diabetes in East Asian population. Diabet Res Clin Prac. 2009;85(2):139-146. doi: https://doi.org/10.1016/j.diabres.2009.04.024
51. Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316(5829):1341-1345. doi: https://doi.org/10.1126/science.1142382
52. Jin T. Current understanding on role of the Wnt signaling pathway effector TCF7L2 in glucose homeostasis. Endocrin Rev. 2016;37(3):254-277. doi: https://doi.org/10.1210/er.2015-1146
53. Shao W, Wang D, Chiang YT, et al. The Wnt signaling pathway effector TCF7L2 controls gut and brain proglucagon gene expression and glucose homeostasis. Diabetes. 2013;62(3):789-800. doi: https://dx.doi.org/10.2337/2Fdb12-0365
54. Ip W, Chiang YT, Jin T. The involvement of the wnt signaling pathway and TCF7L2 in diabetes mellitus: The current understanding, dispute, and perspective. Cell & Bioscience. 2012;2(1):1-2. doi: https://dx.doi.org/10.1186/2F2045-3701-2-28
55. Liu Z, Habener JF. Wnt signaling in pancreatic islets. The islets of langerhans. 2010:391-419. doi: https://doi.org/10.1007/978-90-481-3271-3_17
56. Ng LF, Kaur P, Bunnag N, et al. WNT signaling in disease. Cells. 2019;8(8):826. doi: https://doi.org/10.3390/cells8080826
57. Mahajan A, Go MJ, Zhang W, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Gen. 2014; 46(3):234-244. doi: https://doi.org/10.1038/ng.2897
58. Hattersley AT. Prime suspect: the TCF7L2 gene and type 2 diabetes risk. J Clin Invest. 2007;117(8):2077-2079. doi: https://doi.org/10.1172/JCI33077
59. Loder MK, Xavier GD, McDonald A, Rutter GA. TCF7L2 controls insulin gene expression and insulin secretion in mature pancreatic β-cells. Biochem Soc Trans. 2008;36(Pt 3):357-359. doi: https://doi.org/10.1042/bst0360357
60. da Silva Xavier G, Loder MK, McDonald A, et al. TCF7L2 regulates late events in insulin secretion from pancreatic islet β-cells. Diabetes. 2009;58(4):894-905. doi: https://doi.org/10.2337/db08-1187
61. Sanghera DK, Blackett PR. Type 2 diabetes genetics: beyond GWAS. J Diabet Metab. 2012;3(198):6948 doi: https://doi.org/10.1038/nrendo.2014.11
62. Hivert MF, Vassy JL, Meigs JB. Susceptibility to type 2 diabetes mellitus—from genes to prevention. Nat Rev Endocrinol. 2014;10(4):198-205. doi: https://doi.org/10.4172/2F2155-6156.1000198
Рецензия
Для цитирования:
Jan A., Jan H., Ullah Z. Фактор транскрипции 7 (TCF7L2): фактор риска развития сахарного диабета 2 типа. Сахарный диабет. 2021;24(4):371-376. https://doi.org/10.14341/DM12313
For citation:
Jan A., Jan H., Ullah Z. Transcription factor 7-like 2 (TCF7L2): a culprit gene in Type 2 Diabetes Mellitus. Diabetes mellitus. 2021;24(4):371-376. https://doi.org/10.14341/DM12313

Контент доступен под лицензией Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).