Lipodystrophy at the insulin injection sites: current trends in epidemiology, diagnostics and prevention
https://doi.org/10.14341/DM12095
Abstract
Lipodystrophy at the injection sites is most common local complication of insulin therapy. The history of its study started in 1926, when first cases of lipoatrophy at the sites of insulin injections were described. As we moved to human insulin and insulin analogues, immune mediated atrophic form of lipodystrophy has been replaced by hypertrophic one, which reflects anabolic and mitogenic effect of insulin.
Lipohypertrophy at the injection sites is detected by physical examination in 40-70% of insulin-treated subjects. The detection efficiency depends on health care provider`s skills. Therefore, training of medical doctors and nurses in physical examination of injection sites seems to be reasonable.
In recent years, ultrasound was introduced for diagnostics of insulin-induced lipohypertrophy. The method is more sensitive compared to palpation; ultrasound-verified lipohypertropthy was detected in more than 80% of cases. In patients with wide-spread lipohypertrophy ultrasound can be used to find suitable sites for injections (“ultrasound injection map”). Strain sonoelastography and 3D-power Doppler ultrasound can be used for quantitative estimation of rigidity and vascularization of lipohypertrophy. Both MRI and infrared images are considered as promising diagnostic tools.
In a number of studies, it has been shown that the presence of lipohypertrophy is associated with high HbA1c levels, enhanced glycemic variability, «unexplained» hypoglycemia, and increased insulin doses. Thereby, lipohypertrophy aggravates the diabetes-related costs.
The main risk factor for lipohypertrophy is inappropriate injection technique, including the lack of the site rotation, injections into lipodystrophic lesions, small injection area, reuse or excessive length of the needles. Accordingly, training patients in the injection technique is the basis for prevention of complication. The cessation of injections in lipohypertrophy areas and regular site rotation is essential for adequate titration of insulin dose and achievement of glycemic targets.
About the Authors
Vadim V. KlimontovRussian Federation
MD, PhD, Professor
Mikhail M. Lazarev
Russian Federation
MD, junior research associate
Andrey Ju. Letyagin
Russian Federation
MD, PhD, Professor
Dinara M. Bulumbaeva
Russian Federation
MD, junior research associate
Natalia P. Bgatova
Russian Federation
PhD, Professor
References
1. Barborka CJ. Fatty atrophy from injections of insulin. Report of two cases. JAMA 1926;87(20):1646–1647. doi: https://doi.org/10.1001/jama.1926.92680200003012c
2. Depisch F. Über lokale lipodystrophie bei lange zeit mit insulin behandelten fllen von diabetes. Klin Wehnschr. 1926;5(42):1965–1966. doi: https://doi.org/10.1007/bf01710208
3. Renold AE, Marble A, Fawcett DW. Action of insulin on deposition of glycogen and storage of fat in adipose tissue. Endocrinology. 1950;46(1):55–66. doi: https://doi.org/10.1210/endo-46-1-55
4. Reeves WG, Allen BR, Tattersall RB. Insulin-induced lipoatrophy: evidence for an immune pathogenesis. BMJ. 1980;280(6230):1500–1503. doi: https://doi.org/10.1136/bmj.280.6230.1500
5. Campbell IW, Duncan C, Anani AR. Paradoxical lipodystrophic changes due to conventional bovine and highly purified porcine/bovine insulins. Postgrad Med J. 1984;60(704):439–441. doi: https://doi.org/10.1136/pgmj.60.704.439
6. Kordonouri O, Biester T, Schnell K, et al. Lipoatrophy in children with type 1 diabetes: an increasing incidence? J Diabetes Sci Technol. 2015;9(2):206–208. doi: https://doi.org/10.1177/1932296814558348
7. Gentile S, Guarino G, Giancaterini A, et al. A suitable palpation technique allows to identify skin lipohypertrophic lesions in insulin-treated people with diabetes. Springerplus. 2016;5(1):563. doi: https://doi.org/10.1186/s40064-016-1978-y
8. Vardar B, Kizilci S. Incidence of lipohypertrophy in diabetic patients and a study of influencing factors. Diabetes Res Clin Pract. 2007;77(2):231–236. doi: https://doi.org/10.1016/j.diabres.2006.12.023
9. Blanco M, Hernández MT, Strauss KW, Amaya M. Prevalence and risk factors of lipohypertrophy in insulin-injecting patients with diabetes. Diabetes Metab. 2013;39(5):445–453. doi: https://doi.org/10.1016/j.diabet.2013.05.006
10. Al Ajlouni M, Abujbara M, Batieha A, Ajlouni K. Prevalence of lipohypertrophy and associated risk factors in insulin-treated patients with type 2 diabetes mellitus. Int J Endocrinol Metab. 2015;13(2):e20776. doi: https://doi.org/10.5812/ijem.20776
11. Al Hayek AA, Robert AA, Braham RB, Al Dawish MA. Frequency of lipohypertrophy and associated risk factors in young patients with type 1 diabetes: a cross-sectional study. Diabetes Ther. 2016;7(2):259–267. doi: https://doi.org/10.1007/s13300-016-0161-3
12. Ji L, Sun Z, Li Q, et al. Lipohypertrophy in China: prevalence, risk factors, insulin consumption, and clinical impact. Diabetes Technol Ther. 2017;19(1):61–67. doi: https://doi.org/10.1089/dia.2016.0334
13. Barola A, Tiwari P, Bhansali A, et al. Insulin-related lipohypertrophy: lipogenic action or tissue trauma? Front Endocrinol (Lausanne). 2018;9:638. doi: https://doi.org/10.3389/fendo.2018.00638
14. Gupta SS, Gupta KS, Gathe SS, et al. Clinical implications of lipohypertrophy among people with type 1 diabetes in India. Diabetes Technol Ther. 2018;20(7):483–491. doi: https://doi.org/10.1089/dia.2018.0074
15. Sürücü HA, O’Kur Arslan H. Lipohypertrophy in individuals with type 2 diabetes: prevalence and risk factors. J Caring Sci. 2018;7(2):67–74. doi: https://doi.org/10.15171/jcs.2018.011
16. Tsadik AG, Atey TM, Nedi T, et al. Effect of insulin-induced lipodystrophy on glycemic control among children and adolescents with diabetes in Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia. J Diabetes Res. 2018;2018:4910962. doi: https://doi.org/10.1155/2018/4910962
17. Gentile S, Strollo F, Satta E, et al. Insulin-related lipohypertrophy in hemodialyzed diabetic people: a multicenter observational study and a methodological approach. Diabetes Ther. 2019;10(4):1423–1433. doi: https://doi.org/10.1007/s13300-019-0650-2
18. Kordonouri O, Lauterborn R, Deiss D. Lipohypertrophy in young patients with type 1 diabetes. Diabetes Care. 2002;25(3):634. doi: https://doi.org/10.2337/diacare.25.3.634
19. Климонтов В.В., Лазарев М.М., Махотин А.А., и др. Липогипертрофии, индуцированные инсулином: клиническая и ультразвуковая характеристика // Сахарный диабет. — 2018. — Т. 21. — №4. — С. 255–263. [Klimontov VV, Lazarev MM, Makhotin AA, et al. Insulin-induced lipohypertrophy: clinical and ultrasound characteristics. Diabetes mellitus. 2018;21(4):255–263. (In Russ.)] doi: https://doi.org/10.14341/DM9549
20. Holstein A, Stege H, Kovacs P. Lipoatrophy associated with the use of insulin analogues: a new case associated with the use of insulin glargine and review of the literature. Expert Opin Drug Saf. 2010;9(2):225–231. doi: https://doi.org/10.1517/14740330903496402
21. Hernar I, Haltbakk J, Broström A. Differences in depression, treatment satisfaction and injection behaviour in adults with type 1 diabetes and different degrees of lipohypertrophy. J Clin Nurs. 2017;26(23-24):4583–4596. doi: https://doi.org/10.1111/jocn.13801
22. Deeb A, Abdelrahman L, Tomy M, et al. Impact of insulin injection and infusion routines on lipohypertrophy and glycemic control in children and adults with diabetes. Diabetes Ther. 2019;10(1):259–267. doi: https://doi.org/10.1007/s13300-018-0561-7
23. Singha A, Bhattarcharjee R, Ghosh S, et al. Concurrence of lipoatrophy and lipohypertrophy in children with type 1 diabetes using recombinant human insulin: two case reports. Clin Diabetes. 2016;34(1):51–53. doi: https://doi.org/10.2337/diaclin.34.1.51
24. Chakraborty PP, Biswas SN. Distant site lipoatrophy: a rare complication of subcutaneous insulin therapy. Postgrad Med J. 2016;92(1083):57–58. doi: https://doi.org/10.1136/postgradmedj-2015-133639
25. Deng N, Zhang X, Zhao F, et al. Prevalence of lipohypertrophy in insulin-treated diabetes patients: a systematic review and meta-analysis. J Diabetes Investig. 2017. doi: https://doi.org/10.1111/jdi.12742
26. Lopez X, Castells M, Ricker A, et al. Human insulin analog--induced lipoatrophy. Diabetes Care. 2008;31(3):442–444. doi: https://doi.org/10.2337/dc07-1739
27. Fujikura J, Fujimoto M, Yasue S, et al. Insulin-induced lipohypertrophy: report of a case with histopathology. Endocr J. 2005;52(5):623–628. doi: https://doi.org/10.1507/endocrj.52.623
28. Wallymahmed ME, Littler P, Clegg C, et al. Nodules of fibrocollagenous scar tissue induced by subcutaneous insulin injections: a cause of poor diabetic control. Postgrad Med J. 2004;80(950):732–733. doi: https://doi.org/10.1136/pgmj.2004.019547
29. Bernárdez C, Schärer L, Molina-Ruiz AM, Requena L. Nodular amyloidosis at the sites of insulin injections. J Cutan Pathol. 2015;42(7):496–502. doi: https://doi.org/10.1111/cup.12501
30. Landau S. Images in clinical medicine. Insulin-induced lipohypertrophy. N Engl J Med. 2012;366(5):e9. doi: https://doi.org/10.1056/NEJMicm1101527
31. Strollo F, Guarino G, Armentano V, et al. Unexplained hypoglycaemia and large glycaemic variability: skin lipohypertrophy as a predictive sign. Diabetes Res Open J. 2016;2(1):24–32. doi: https://doi.org/10.17140/DROJ-2-126
32. Omar MA, El-Kafoury AA, El-Araby RI. Lipohypertrophy in children and adolescents with type 1 diabetes and the associated factors. BMC Res Notes. 2011;4:290. doi: https://doi.org/10.1186/1756-0500-4-290
33. Sawatkar GU, Kanwar AJ, Dogra S, et al. Spectrum of cutaneous manifestations of type 1 diabetes mellitus in 500 south asian patients. Br J Dermatol. 2014;171(6):1402–1406. doi: https://doi.org/10.1111/bjd.13077
34. Лазарев М.М., Климонтов В.В., Летягин А.Ю., и др. Комплексная ультразвуковая диагностика липогипертрофий, индуцированных инсулином, у больных сахарным диабетом // Российский электронный журнал лучевой диагностики. — 2019. — Т. 9. — №3. — С. 143–154. [Lazarev MM, Klimontov VV, Letyagin AYu, et al. Complex ultrasound diagnostics of insulin-induced lipohypertropthy in patients with diabetes. Rossijskii jelektronnii zhurnal luchevoi diagnostiki. 2019;9(3):143–154. (In Russ).] doi: https://doi.org/10.21569/2222-7415-2019-9-3-143-154
35. Волкова Н.И., Давиденко И.Ю. Клиническое значение липогипертрофий без визуальных и пальпаторных изменений, выявленных с помощью УЗИ подкожной жировой клетчатки // Терапевтический архив. — 2019. — Т. 91. — №4. —С. 62–66. [Volkova NI, Davidenko IY. Clinical significance of lipohypertrophy without visual and palpable changes detected by ultrasonography of subcutaneous fat. Ter arkh. 2019;91(4):62–66. (In Russ.)] doi: https://doi.org/10.26442/00403660.2019.04.000128
36. Abu Ghazaleh H, Hashem Р, Forbes A, et al. A Systematic review of ultrasound-detected lipohypertrophy in insulin-exposed people with diabetes. Diabetes Ther. 2018;9(5):1741–1756. doi: https://doi.org/10.1007/s13300-018-0472-7
37. Volkova N, Davidenko I, Rudakova Ju, Sesukina A. Insulin-induced lipohypertrophy diagnostics in diabetic patients: subcutaneous fat ultrasonography. Endocrine Abstracts 2015:37:EP351. doi: https://doi.org/10.1530/endoabs.37.EP351
38. Kapeluto JE, Paty BW, Chang SD, Meneilly GS. Ultrasound detection of insulin-induced lipohypertrophy in type 1 and type 2 diabetes. Diabet Med. 2018;35(10):1383–1390. doi: https://doi.org/10.1111/dme.13764
39. Perciun R. Ultrasonographic aspect of su bcutaneous tissue dystrophies as a result of insulin injections. Med Ultrasonogr. 2010;12(2):104–109
40. Mulnier H, Hashem R, Duaso M, et al. Subcutaneous tissue changes and dermal inflammation at insulin injections sites: a feasibility study using ultrasound to describe characterize and grade lipohypertrophy. Diabetologia. 2017;60(Suppl 1):S90.
41. Bertuzzi F, Meneghini E, Bruschi E, et al. Ultrasound characterization of insulin induced lipohypertrophy in type 1 diabetes mellitus. J Endocrinol Invest. 2017;40(10):1107–1113. doi: https://doi.org/10.1007/s40618-017-0675-1
42. Kaltheuner L, Kaltheuner M, Heinemann L. Lipohypertrophic skin changes in patients with diabetes: visualization by infrared images. J Diabetes Sci Technol. 2018;12(6):1152–1158. doi: https://doi.org/10.1177/1932296818777264
43. Gradel AK, Porsgaard T, Lykkesfeldt J, et al. Factors affecting the absorption of subcutaneously administered insulin: effect on variability. J Diabetes Res. 2018;2018:1205121. doi: https://doi.org/10.1155/2018/1205121
44. Famulla S, Hövelmann U, Fischer A, et al. Insulin injection into lipohypertrophic tissue: blunted and more variable insulin absorption and action and impaired postprandial glucose control. Diabetes Care. 2016;39(9):1486–1492. doi: https://doi.org/10.2337/dc16-0610
45. Климонтов В.В. Влияние вариабельности гликемии на риск развития сердечно-сосудистых осложнений при сахарном диабете // Кардиология. — 2018. — Т. 58. — №10. — С. 80–87. [Klimontov VV. Impact of glycemic variability on cardiovascular risk in diabetes. Cardiology. 2018;58(10):80–87. (In Russ.)] doi: https://doi.org/10.18087/cardio.2018.10.10152
46. Klimontov VV, Myakina NE. Glucose variability indices predict the episodes of nocturnal hypoglycemia in elderly type 2 diabetic patients treated with insulin. Diabetes Metab Syndr. 2017;11(2):119–124. doi: https://doi.org/10.1016/j.dsx.2016.08.023
47. Майоров А.Ю., Мельникова О.Г., Котешкова О.М., и др. Техника инъекций и инфузии при лечении сахарного диабета. Методическое руководство. — М., 2018. — 64 с. [Mayorov AY, Melnikova OG, Koteshkova OM, et al. The technique of injection and infusion in the treatment of diabetes. Methodological guidance. Moscow; 2018. 64 р. (In Russ.)]
48. Smith M, Clapham L, Strauss K. UK lipohypertrophy interventional study. Diabetes Res Clin Pract. 2017;126:248–253. doi: https://doi.org/10.1016/j.diabres.2017.01.020
49. Samdal F, Amland PF, Sandsmark M, Birkeland KI. Diabetic lipohypertrophy treated with suction-assisted lipectomy. J Intern Med. 1993;234(5):489–492. doi: https://doi.org/10.1111/j.1365-2796.1993.tb00782.x
50. Gandolfi E, Thione A. A case of insulin lipohypertrophy in a young diabetic female successfully treated by vibroliposuction. J Plast Reconstr Aesthet Surg. 2009;62(12):e601–603. doi: https://doi.org/10.1016/j.bjps.2008.11.114
51. RadiAnt DICOM Viewer [Software]. Version 5.0.0 [cited 2019 November 19]. Available from: https://www.radiantviewer.com/blog/
Supplementary files
|
1. Fig. 1. The light-optical picture of insulin-induced lipohypertrophy in the subcutaneous fatty tissue of the anterior abdominal wall. A - plot of lipohypertrophy with fibrosis (arrow); B - a site of unchanged subcutaneous adipose tissue in an area free of lipodystrophy. Hematoxylin-eosin staining. Light microscopy. SW × 400 | |
Subject | ||
Type | Other | |
View
(258KB)
|
Indexing metadata ▾ |
|
2. Fig. 2. Ultrastructural features of insulin-induced lipohypertrophy in the subcutaneous fatty tissue of the anterior abdominal wall. A - collagen fibers (arrows); B - a blood capillary with a large number of transport vesicles (arrows) in the endothelium. Electron microscopy. SW A - 12,000x; B - 40 000x. | |
Subject | ||
Type | Other | |
View
(719KB)
|
Indexing metadata ▾ |
|
3. Fig. 3. Plots of lipohypertrophy at the injection sites of insulin on the left and right shoulder in a patient with type 1 diabetes mellitus: F-nd F., 27 years old, type 1 diabetes mellitus for 26 years. Therapy with insulin analogues (degludec and aspart). On examination and palpation revealed areas of lipohypertrophy at the injection of insulin in the shoulder. | |
Subject | ||
Type | Other | |
View
(308KB)
|
Indexing metadata ▾ |
|
4. Fig. 4. The hyperechoic heterogeneous site of lipohypertrophy in the subcutaneous fatty tissue of the anterior abdominal wall in the area of insulin injection: scanning in B-mode. B-naya K., 32 years old, type 1 diabetes mellitus for 20 years, therapy with insulin analogues (glargin 100 U / ml, lyspro). | |
Subject | ||
Type | Other | |
View
(166KB)
|
Indexing metadata ▾ |
|
5. Fig. 5. A heterogeneous site of increased rigidity lipohypertrophy in the subcutaneous fatty tissue of the anterior abdominal wall in the area of insulin injection. A - gray-scale scan in B-mode; B - real-time compression sonoelastography: areas of increased stiffness are colored blue. Boy B., 48 years old, type 2 diabetes mellitus, insulin analogue therapy (levemir) for 6 months. | |
Subject | ||
Type | Other | |
View
(379KB)
|
Indexing metadata ▾ |
|
6. Fig. 6. Reconstruction of the site of lipohypertrophy in the subcutaneous tissue of the anterior abdominal wall in the area of insulin injection. 3D Angio mode. 1 - blood vessels of the subcutaneous tissue, 2 - avascular zone in the area of lipohypertrophy. B-naya K., 32 years old, type 1 diabetes mellitus for 20 years, therapy with insulin analogues (glargin 100 U / ml, lyspro). | |
Subject | ||
Type | Other | |
View
(144KB)
|
Indexing metadata ▾ |
|
7. Fig. 7. 3D reconstruction of MRI images of areas of lipohypertrophy in the subcutaneous tissue of the anterior abdominal wall in the area of insulin injection in a patient with diabetes mellitus: MR tomograph General Electric Discovery MR750W (magnetic field 3.0 T). Coil: Body 48 AA, reconstructed diameter 400 mm, matrix 320x320. Technology (from left to right): T1-WI (TR 195.0; TE 2.1; cut 3 mm); T2-WI Propeller (TR 4000.04 ms; TE 95.8 ms, 3 mm cut), T2-WI FS Rtr Propeller (selective grease suppression; TR 4000.04 ms; TE 95.76 ms, 3 mm cut). In all cases - synchronized coronal projection (slice thickness - 3 mm). Images were obtained in 3D-Volume Rendering mode (multi-planar surface reconstruction; Skin B / W was used in all cases) in the RadiAnt DICOM Viewer Ver program. 5.0.1.21910 (64-bit) [51]. On T1-WI, a green oval shows the zone of lipohypertrophy to the right of the umbilical ring; when comparing T2-WI and T2-WI FS, it is seen that the suppression of the lipid component is negligible (compared to the contralateral side). On T1-WI, the red circle shows the area of lipohypertrophy of adipose tissue to the left of the umbilical ring (mirror image). When comparing T2-WI and T2-WI FS, it is seen that the suppression of the lipid component is significant (compared to the contralateral side). Here and in fig. 8, 9: B-ya Ya., 25 years old, type 1 diabetes mellitus for 20 years, therapy with insulin analogues (glargin 100 U / ml and lizpro). | |
Subject | ||
Type | Other | |
View
(328KB)
|
Indexing metadata ▾ |
|
8. Fig. 8. 3D reconstruction of MRI images of the subcutaneous vessels of the anterior abdominal wall in a patient with diabetes mellitus: MR-tomograph General Electric Discovery MR750W (magnetic field 3.0 T). Coil: Body 48 AA, reconstructed diameter 400 mm, matrix 320x320. Technology: T2-WI FS Rtr Propeller (selective fat reduction; TR 4000.04 ms; TE 95.76 ms, 3 mm cut). The image was obtained in 3D-Volume Rendering mode (multi-planar surface reconstruction; Skin B / W was used in all cases) in the RadiAnt DICOM Viewer Ver program. 5.0.1.21910 (64-bit) [51]. In the zone of lipohypertrophy to the left of the umbilical ring (mirror image), the density of blood vessels is higher than in the contralateral zone, but the vascular tree is less structured (chaotic). | |
Subject | ||
Type | Other | |
View
(472KB)
|
Indexing metadata ▾ |
|
9. Fig. 9. Lipodystrophy at the injection site of insulin: clinical and economic consequences. | |
Subject | ||
Type | Other | |
View
(140KB)
|
Indexing metadata ▾ |
![]() |
10. Fig. 7 | |
Subject | ||
Type | author.submit.suppFile.figureResearchResults | |
Download
(7MB)
|
Indexing metadata ▾ |
![]() |
11. Fig. 8 | |
Subject | ||
Type | author.submit.suppFile.figureResearchResults | |
Download
(5MB)
|
Indexing metadata ▾ |
![]() |
12. Fig. 9 | |
Subject | ||
Type | author.submit.suppFile.figureResearchResults | |
Download
(2MB)
|
Indexing metadata ▾ |
Review
For citations:
Klimontov V.V., Lazarev M.M., Letyagin A.J., Bulumbaeva D.M., Bgatova N.P. Lipodystrophy at the insulin injection sites: current trends in epidemiology, diagnostics and prevention. Diabetes mellitus. 2020;23(2):161-173. (In Russ.) https://doi.org/10.14341/DM12095

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).