1,5-anhydroglucitol in diabetes: its role in diagnostics, screening, glycemic status assessment, and the prediction of complications
https://doi.org/10.14341/DM10258
Abstract
1,5-anhydroglucitol (1,5-AG) is a short-term indicator of glycemic status, reflecting hyperglycemic glucose excursions over the prior 1–2 weeks. As glucose level remains in the normal range, plasma concentration of 1,5-AG is maintained stable due to the balance between intake with the food and renal excretion. Under hyperglycemic conditions, when the renal threshold for glucose is exceeded, concentration of 1,5-AG decreases due to competitive inhibition of 1,5-AG reabsorption by glucose. In clinical practice, plasma 1,5-AG is used for retrospective assessment of postprandial glucose fluctuations in diabetic subjects with mild or moderate elevation of HbA1c. The marker is also applied in clinical trials of new agents affecting postprandial glycemia. The advantages of 1,5-AG as a marker of glycemic status are stability, independence on the physiological state when sampling, applicability for patients with abnormalities of hemoglobin and lifespan of erythrocytes. Meantime, the value of this marker is limited in subjects with renal tubular acidosis, 4-5 stages of chronic kidney disease, renal glucosuria, in those receiving acarbose and SGLT2 inhibitors. Application of 1,5-AG for the diagnosis and screening of type 2 diabetes, gestational diabetes and prediabetes has been tested. It was revealed that sensitivity of 1,5-AG as screening tool may be insufficient in individuals with mild hyperglycemia, especially if fasting hyperglycemia prevails. Therefore, it has been proposed to combine 1,5-AG with assessment of fasting glucose for the screening purposes. In type 2 diabetic subjects low plasma 1,5-AG is a predictor of renal failure, cardiovascular events, including ischemic heart disease, heart failure and stroke. Decreased 1,5-AG concentration in pregnant women is a risk factor for gestational diabetes and macrosomia. Chromatography and enzymatic methods are used to determine 1,5-AG in blood, urine and other biological fluids. Currently, the relatively high cost and lack of standardization restrain the use of 1,5-AG in clinical practice. Further studies are needed for estimation of 1,5-AG value as a marker of glycemic status in type 1 diabetes, in patients with different levels of HbA1c and different magnitude of glucose variability, as well as in situations where the clinical value of HbA1c is limited.
About the Authors
V. V. KlimontovRussian Federation
MD, PhD, Professor
M. V. Dashkin
Russian Federation
References
1. Климонтов В.В., Мякина Н.Е. Вариабельность гликемии при сахарном диабете: инструмент для оценки качества гликемического контроля и риска осложнений // Сахарный диабет. — 2014. — №2. — С. 76–82. [Klimontov VV, Myakina NE. Glycaemic variability in diabetes: a tool for assessing the quality of glycaemic control and the risk of complications. Diabetes Mellitus. 2014;(2):76-82. (In Russ.)]. doi: https://doi.org/10.14341/DM2014276-82
2. Арбузова М.И., Ильин А.В. Перспективен ли тест 1,5-ангидро-D-глюцитол для контроля компенсации и лечения сахарного диабета? // Сахарный диабет. — 2010. — №1. — С. 123–125. [Arbuzova MI, Il’in AV. Is the 1,5-anhydro-D-glucitol test a promising tool for monitoring compensation and treatment of diabetes mellitus? Diabetes Mellitus. 2010;(1):123-125. (In Russ.)]. doi: https://doi.org/10.14341/2072-0351-6027
3. McGill JB, Cole TG, Nowatzke W, et al. Circulating 1,5-anhydroglucitol levels in adult patients with diabetes reflect longitudinal changes of glycemia: A U.S. trial of the GlycoMark assay. Diabetes Care. 2004; 27(8):1859-1865. doi: https://doi.org/10.2337/diacare.27.8.1859
4. Juraschek SP, Miller ER, Appel LJ, et al. The Effects of dietary carbohydrates on 1,5-anhydroglucitol in a population without diabetes: results from the omnicarb trial. Diabet Med. 2017;34(10):1407-1413. doi: https://doi.org/10.1111/dme.13391
5. Kawasaki T, Yamanouchi T, Kashiwabara A, et al. The influence of traditional Chinese herbal drugs on serum 1, 5-anhydroglucitol levels. Diabetes Res Clin Pract.2000;50(2):97-101. doi: https://doi.org/10.1016/s0168-8227(00)00167-4
6. Yamanouchi T, Shinohara T, Ogata N, et al. Common reabsorption system of 1,5-anhydro-d-glucitol, fructose, and mannose in rat renal tubule. Biochim Biophysica Acta. 1996;1291(1):89-95. doi: https://doi.org/10.1016/0304-4165(96)00050-5
7. Dungan KM, Buse JB, Largay J, et al. 1,5-Anhydroglucitol and postprandial hyperglycemia as measured by continuous glucose monitoring system in moderately controlled patients with diabetes. Diabetes Care. 2006;29(6):1214-1219. doi: https://doi.org/10.2337/dc06-1910
8. Akanuma H, Ogawa K, Lee Y, Akanuma Y. Reduced levels of plasma 1,5-anhydroglucitol in diabetic patients. J Biochem. 1981;90(1):157-162. doi: https://doi.org/10.1093/oxfordjournals.jbchem.a133445
9. Li S, Heng X, Sheng H, et al. Determination of glycemic monitoring marker 1,5-anhydroglucitol in plasma by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;875(2):459-464. doi: https://doi.org/10.1016/j.jchromb.2008.09.033
10. Selvin E, Rynders GP, Steffes MW. Comparison of two assays for serum 1,5-anhydroglucitol. Clin Chim Acta. 2011;412(9-10):793-795. doi: https://doi.org/10.1016/j.cca.2011.01.007
11. Malkan UY, Gunes G, Corakci A. Rational diagnoses of diabetes: the comparison of 1,5-anhydroglucitol with other glycemic markers. Springerplus. 2015;4(1):587. doi: https://doi.org/10.1186/s40064-015-1389-5
12. Nowatzke W, Sarno MJ, Birch NC, et al. Evaluation of an assay for serum 1,5-anhydroglucitol (GlycoMark™) and determination of reference intervals on the Hitachi 917 analyzer. Clin Chim Acta. 2004;350(1-2):201-209. doi: https://doi.org/10.1016/j.cccn.2004.08.013
13. Selvin E, Warren B, He X, et al. Establishment of community-based reference intervals for fructosamine, glycated albumin, and 1,5-anhydroglucitol. Clin Chem. 2018;64(5):843-850. doi: https://doi.org/10.1373/clinchem.2017.285742
14. Welter M, Boritza KC, Anghebem-Oliveira MI, et al. Reference intervals for serum 1,5-anhydroglucitol in children, adolescents, adults, and pregnant women. Clin Chim Acta. 2018;486:54-58. doi: https://doi.org/10.1016/j.cca.2018.07.018
15. Mehta SN, Schwartz N, Wood JR, et al. Evaluation of 1,5-anhydroglucitol, hemoglobin A1c, and glucose levels in youth and young adults with type 1 diabetes and healthy controls. Pediatr Diabetes. 2011;13(3):278-284. doi: https://doi.org/10.1111/j.1399-5448.2011.00830.x
16. Akanuma Y, Morita M, Fukuzawa N, et al. Urinary excretion of 1,5-anhydro-D-glucitol accompanying glucose excretion in diabetic patients. Diabetologia.1988;31(11):831-835. doi: https://doi.org/10.1007/BF00277486
17. Stettler C, Stahl M, Allemann S, et al. Association of 1,5-anhydroglucitol and 2-h postprandial blood glucose in type 2 diabetic patients. Diabetes Care. 2008;31(8):1534-1535. doi: https://doi.org/10.2337/dc08-0385
18. Sun J, Dou JT, Wang XL, et al. Correlation between 1,5-anhydroglucitol and glycemic excursions in type 2 diabetic patients. Chin Med J (Engl). 2011;124(22):3641-3645.
19. Chan CL, Pyle L, Kelsey MM, et al. Alternate glycemic markers reflect glycemic variability in continuous glucose monitoring in youth with prediabetes and type 2 diabetes. Pediatr Diabetes. 2017;18(7):629-636. doi: https://doi.org/10.1111/pedi.12475
20. Nowak N, Skupien J, Cyganek K, et al. 1,5-Anhydroglucitol as a marker of maternal glycaemic control and predictor of neonatal birthweight in pregnancies complicated by type 1 diabetes mellitus. Diabetologia. 2013;56(4):709-713. doi: https://doi.org/10.1007/s00125-013-2830-3
21. Kim MJ, Jung HS, Hwang-Bo Y, et al. Evaluation of 1,5-anhydroglucitol as a marker for glycemic variability in patients with type 2 diabetes mellitus. Acta Diabetol. 2013;50(4):505-510. doi: https://doi.org/10.1007/s00592-011-0302-0
22. Suh S, Joung JY, Jin SM, et al. Strong correlation between glycaemic variability and total glucose exposure in type 2 diabetes is limited to subjects with satisfactory glycaemic control. Diabetes Metab.2014;40(4):272-277. doi: https://doi.org/10.1016/j.diabet.2014.01.006
23. Chon S, Lee YJ, Fraterrigo G, et al. Evaluation of glycemic variability in well-controlled type 2 diabetes mellitus. Diabetes Technol Ther. 2013;15(6):455-460. doi: https://doi.org/10.1089/dia.2012.0315
24. Ueno H, Mizuta M, Shiiya T, et al. Exploratory trial of intranasal administration of glucagon-like peptide-1 in Japanese patients with type 2 diabetes. Diabetes Care. 2014;37(7):2024-2027. doi: https://doi.org/10.2337/dc13-0690
25. Mathieu C, Bode BW, Franek E, et al. Efficacy and safety of fast-acting insulin aspart in comparison with insulin aspart in type 1 diabetes (onset 1): A 52-week, randomized, treat-to-target, phase III trial. Diabetes Obes Metab. 2018;20(5):1148-1155. doi: https://doi.org/10.1111/dom.13205
26. Scott ES, Januszewski AS, Fulcher G, et al. 123-LB: Continuous subcutaneous insulin infusion from diagnosis of type 1 diabetes improves intermediate glycaemic variability in children. Diabetes. 2019;68(1):123. doi: https://doi.org/10.2337/db19-123-lb
27. Peixoto EM, Bozkurt NC, Messinger S, et al. The use of 1.5-anhydroglucitol for monitoring glycemic control in islet transplant recipients. Cell Transplant. 2014;23(10):1213-1219. doi: https://doi.org/10.3727/096368913X669734
28. Heller S, Bowering K, Raskin P, et al. The effect of basal-bolus therapy varies with baseline 1,5-anhydroglucitol level in people with Type 2 diabetes: a post hoc analysis. Diabet Med. 2018;35(9):1273-1278. doi: https://doi.org/10.1111/dme.13693
29. Sakane N, Yoshida T, Kogure A, Kondo M. Different effects of acarbose and voglibose on serum 1,5-anhydroglucitol concentrations. Diabetes Care. 1998;21(3):465-465. https://doi.org/10.2337/diacare.21.3.465a
30. Watanabe K, Uchino H, Ohmura C, et al. Different effects of two α-glucosidase inhibitors, acarbose and voglibose, on serum 1,5-anhydroglucitol (1,5AG) level. J Diabetes Complications. 2004;18(3):183-186. doi: https://doi.org/10.1016/s1056-8727(03)00055-2
31. Balis DA, Tong C, Meininger G. Effect of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, on measurement of serum 1,5-anhydroglucitol. J Diabetes. 2014;6(4):378-380. doi: https://doi.org/10.1111/1753-0407.12116
32. Fortuna D, McCloskey LJ, Stickle DF. Model analysis of effect of canagliflozin (Invokana), a sodium–glucose cotransporter 2 inhibitor, to alter plasma 1,5-anhydroglucitol. Clin Chim Acta. 2016;452:138-141. doi: https://doi.org/10.1016/j.cca.2015.11.010
33. Fereidouni SS, Shows TP, Lessard-Chaudoin C, et al. 1227-P: GlycoMark 1,5-Anhydrocluitol values in patients taking SGLT2 inhibitors. Diabetes. 2019;68(S 1). doi: https://doi.org/10.2337/db19-1227-P.
34. Kim WJ, Park CY, Lee KB, et al. Serum 1,5-anhydroglucitol concentrations are a reliable index of glycemic control in type 2 diabetes with mild or moderate renal dysfunction. Diabetes Care. 2012;35(2):281-286. doi: https://doi.org/10.2337/dc11-1462
35. Hasslacher C, Kulozik F. Effect of renal function on serum concentration of 1,5-anhydroglucitol in type 2 diabetic patients in chronic kidney disease stages I-III: A comparative study with HbA1c and glycated albumin. J Diabetes. 2016;8(5):712-719. doi: https://doi.org/10.1111/1753-0407.12354
36. Bai Y, Yang R, Song Y, Wang Y. Serum 1,5-anhydroglucitol concentrations remain valid as a glycemic control marker in diabetes with earlier chronic kidney disease stages. Exp Clin Endocrinol Diabetes. 2019;127(4):220-225. doi: https://doi.org/10.1055/s-0043-122142
37. Emoto M, Tabata T, Inoue T, et al. Plasma 1,5-anhydroglucitol concentration in patients with end-stage renal disease with and without diabetes mellitus. Nephron. 1992;61(2):181-186. doi: https://doi.org/10.1159/000186868
38. Phillipov G, Ninan VT, Mathew TH. Plasma 1,5-Anhydro-D-glucitol concentration and its relation to other plasma components in renal failure and renal transplant recipients. Clin Chim Acta. 1996;247(1-2):51-58. doi: https://doi.org/10.1016/0009-8981(95)06219-x
39. Sydow K, Wiedfeld C, Musshoff F, et al. Evaluation of 1,5-anhydro-d-glucitol in clinical and forensic urine samples. Forensic Sci Int. 2018;287:88-97. doi: https://doi.org/10.1016/j.forsciint.2018.03.002
40. Mook-Kanamori DO, Selim MM, Takiddin AH, et al. 1,5-Anhydroglucitol in saliva is a noninvasive marker of short-term glycemic control. J Clin Endocrinol Metab. 2014;99(3):E479-E483. doi: https://doi.org/10.1210/jc.2013-3596
41. Ma X, Hao Y, Hu X, et al. 1,5-Anhydroglucitol is associated with early-phase insulin secretion in chinese patients with newly diagnosed type 2 diabetes mellitus. Diabetes Technol Ther. 2015;17(5):320-326. doi: https://doi.org/10.1089/dia.2014.0346
42. Yamanouchi T, Akanuma Y, Toyota T, et al. Comparison of 1,5-Anhydroglucitol, HbA1c, and fructosamine for detection of diabetes mellitus. Diabetes. 1991;40(1):52-57. doi: https://doi.org/10.2337/diab.40.1.52
43. Wang Y, Yuan Y, Zhang Y, et al. Serum 1,5-Anhydroglucitol level as a screening tool for diabetes mellitus in a community-based population at high risk of diabetes. Acta Diabetol. 2017;54(5):425-431. doi: https://doi.org/10.1007/s00592-016-0944-z
44. Ying L, He X, Ma X, et al. Serum 1,5-Anhydroglucitol when used with fasting plasma glucose improves the efficiency of diabetes screening in a Chinese population. Sci Rep. 2017;7(1):11968. doi: https://doi.org/10.1038/s41598-017-12210-z
45. Saglam B, Uysal S, Sozdinler S, et al. Diagnostic value of glycemic markers HbA1c, 1,5-Anhydroglucitol and glycated albumin in evaluating gestational diabetes mellitus. Ther Adv Endocrinol Metab. 2017;8(12):161-167. doi: https://doi.org/10.1177/2042018817742580
46. Pramodkumar TA, Jayashri R, Gokulakrishnan K, et al. 1,5-Anhydroglucitol in gestational diabetes mellitus. J Diabetes Complications. 2019;33(3):231-235. doi: https://doi.org/10.1016/j.jdiacomp.2018.11.010
47. Corcoran SM, Achamallah N, Loughlin JO, et al. First trimester serum biomarkers to predict gestational diabetes in a high-risk cohort: Striving for clinically useful thresholds. Eur J Obstet Gynecol Reprod Biol. 2018;222:7-12. doi: https://doi.org/10.1016/j.ejogrb.2017.12.051
48. Delaney SS, Coley RY, Brown Z. 1,5-Anhydroglucitol: a new predictor of neonatal birth weight in diabetic pregnancies. Eur J Obstet Gynecol Reprod Biol. 2015;189:55-58. doi: https://doi.org/10.1016/j.ejogrb.2015.03.021
49. Zekavat SM, Butkovich S, Young GJ, et al. A computational model of 1,5-AG dynamics during pregnancy. Physiol Rep. 2017;5(16):e13375. doi: https://doi.org/10.14814/phy2.13375
50. Pontoglio M, Prie´ D, Cheret C, et al. HNF1alpha controls renal glucose reabsorption in mouse and man. EMBO Rep. 2000;1(4):359-365. doi: https://doi.org/10.1093/embo-reports/kvd071
51. Pal A, Farmer AJ, Dudley C, et al. Evaluation of serum 1,5-Anhydroglucitol levels as a clinical test to differentiate subtypes of diabetes. Diabetes Care. 2010;33(2):252-257. doi: https://doi.org/10.2337/dc09-1246
52. Selvin E, Wang D, McEvoy JW, et al. Response of 1,5-Anhydroglucitol to intensive glucose- and blood-pressure lowering interventions, and its associations with clinical outcomes in the ADVANCE trial. Diabetes Obes Metab.2019;21(8):2017-2023. doi: https://doi.org/10.1111/dom.13755
53. Rebholz CM, Grams ME, Chen Y, et al. Serum levels of 1,5-anhydroglucitol and risk of incident end-stage renal disease. Am J Epidemiol. 2017;186(8):952-960. doi: https://doi.org/10.1093/aje/kwx167
54. Tavares G, Venturini G, Padilha K, et al. 1,5-Anhydroglucitol predicts CKD progression in macroalbuminuric diabetic kidney disease: results from non-targeted metabolomics. Metabolomics.2018;14(4):39. doi: https://doi.org/10.1007/s11306-018-1337-9
55. Watanabe M, Kokubo Y, Higashiyama A, et al. Serum 1,5-Anhydro-D-glucitol levels predict first-ever cardiovascular disease: an 11-year population-based cohort study in Japan, the Suita study. Atherosclerosis.2011;216(2):477-483. doi: https://doi.org/10.1016/j.atherosclerosis.2011.02.033
56. Selvin E, Rawlings A, Lutsey P, et al. Association of 1,5-Anhydroglucitol with cardiovascular disease and mortality. Diabetes. 2016;65(1):201-208. doi: https://doi.org/10.2337/db15-0607
57. Liang M, McEvoy JW, Chen Y, et al. Association of a biomarker of glucose peaks, 1,5-Anhydroglucitol, with subclinical cardiovascular disease. Diabetes Care. 2016;39(10):1752-1759. doi: https://doi.org/10.2337/dc16-0840
58. Fujiwara T, Yoshida M, Yamada H, et al. Lower 1,5-Anhydroglucitol is associated with denovo coronary artery disease in patients at high cardiovascular risk. Heart Vessels. 2015;30(4):469-476. doi: https://doi.org/10.1007/s00380-014-0502-y
59. Ikeda N, Hara H, Hiroi Y. 1,5-Anhydro-D-glucitol predicts coronary artery disease prevalence and complexity. J Cardiol. 2014;64(4):297-301. doi: https://doi.org/10.1016/j.jjcc.2014.02.014
60. Ouchi S, Shimada K, Miyazaki T, et al. Low 1,5-Anhydroglucitol levels are associated with long-term cardiac mortality in acute coronary syndrome patients with hemoglobin A1c levels less than 7.0. Cardiovasc Diabetol. 2017;16(1):151. doi: https://doi.org/10.1186/s12933-017-0636-1
61. Ding N, Kwak L, Ballew SH, et al. Traditional and nontraditional glycemic markers and risk of peripheral artery disease: The Atherosclerosis Risk in Communities (ARIC) study. Atherosclerosis. 2018;274:86-93. doi: https://doi.org/10.1016/j.atherosclerosis.2018.04.042
62. Shiga Y, Kuriyama M, Kanaya Y, et al. Serum 1,5-anhydroglucitol: risk factor of acute ischemic stroke and transient ischemic attack in well-controlled diabetes. Cerebrovasc Dis. 2017;44(5-6):325-329. doi: https://doi.org/10.1159/000481626
63. Rawlings AM, Sharrett AR, Mosley TH, et al. Glucose peaks and the risk of dementia and 20-Year cognitive decline. Diabetes Care. 2017;40(7):879-886. doi: https://doi.org/10.2337/dc16-2203
64. Torimoto K, Okada Y, Mori H, Tanaka Y. Low levels of 1,5-anhydro-D-glucitol are associated with vascular endothelial dysfunction in type 2 diabetes. Cardiovasc Diabetol. 2014;13:99. doi: https://doi.org/10.1186/1475-2840-13-99.
65. Sato T, Kameyama T, Inoue H. Association of reduced levels of serum 1,5-Anhydro-d-glucitol with carotid atherosclerosis in patients with type 2 diabetes. J Diabetes Complications. 2014;28(3):348-352. doi: https://doi.org/10.1016/j.jdiacomp.2014.01.004
66. Klimontov VV, Myakina NE. Glucose variability indices predict the episodes of nocturnal hypoglycemia in elderly type 2 diabetic patients treated with insulin. Diabetes Metab Syndr. 2017;11(2):119-124. doi: https://doi.org/10.1016/j.dsx.2016.08.023
67. Rama Chandran S, Tay WL, Lye WK, et al. Beyond HbA1c: comparing glycemic variability and glycemic indices in predicting hypoglycemia in type 1 and type 2 diabetes. Diabetes Technol Ther. 2018;20(5):353-362. doi: https://doi.org/10.1089/dia.2017.0388
68. Lee AK, Lee CJ, Huang ES, et al. Risk factors for severe hypoglycemia in black and white adults with diabetes: The Atherosclerosis Risk in Communities (ARIC) study. Diabetes Care. 2017;40(12):1661-1667. doi: https://doi.org/10.2337/dc17-0819
69. Климонтов В.В. Влияние вариабельности гликемии на риск развития сердечно-сосудистых осложнений при сахарном диабете // Кардиология. — 2018. — Т. 58. — №10. — С. 80−87. [Klimontov VV. Impact of glycemic variability on cardiovascular risk in diabetes. Kardiologiia. 2018;58(10):80-87. (In Russ.)]. doi: https://doi.org/10.18087/cardio.2018.10.10152
Supplementary files
|
1. Рисунок 1 | |
Subject | ||
Type | Исследовательские инструменты | |
View
(21KB)
|
Indexing metadata ▾ |
|
2. Рисунок 2 | |
Subject | ||
Type | Исследовательские инструменты | |
View
(55KB)
|
Indexing metadata ▾ |
|
3. Fig. 1. Molecular structure of glucose and 1,5-anhydroglucitol. | |
Subject | ||
Type | Other | |
View
(73KB)
|
Indexing metadata ▾ |
|
4. Fig. 2. urinary Excretion of 1,5-anhydroglucitol in conditions of normoglycemia (left) and hyperglycemia (right). | |
Subject | ||
Type | Other | |
View
(373KB)
|
Indexing metadata ▾ |
Review
For citations:
Klimontov V.V., Dashkin M.V. 1,5-anhydroglucitol in diabetes: its role in diagnostics, screening, glycemic status assessment, and the prediction of complications. Diabetes mellitus. 2020;23(3):250-259. (In Russ.) https://doi.org/10.14341/DM10258

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).