Influence of hyperinsulinemic – hypoglycemic clamp on induced platelet aggregation, activity of physiological anticoagulants and von Willebrand factor in patients with type I diabetes
Abstract
Background. Intensive glycaemic control in patients with type 1 diabetes may lead to hypoglycaemia and thus increase the risk of cardiovascular and cerebrovascular events. Platelet activation and/or decreased activity of physiological anticoagulants during hypoglycaemia may play a role in the development of cardiovascular or cerebrovascular complications.
Aims. To investigate induced platelet activity, the activity of physiological anticoagulants, and the von Wil-lebrand factor in patients with type 1 diabetes with the hyperinsulinaemic–hypoglycaemic clamp.
Materials and methods. We examined 11 patients with type 1 diabetes without macro- and micro-vascular complications (6 males, 5 females, mean age 23.7 ± 5.6 years, A1C 9.7 ± 2.3%). Induced platelet aggregation, physiological anticoagulants (Protein S, Protein C, AT III) and the von Willebrand factor were studied at hyperglycaemic, euglycaemic, and hypoglycaemic stages during use of a hyperinsulinaemic (1 mU/kg/min) hypoglycaemic clamp.
Results. Platelet aggregation to all agonists increased significantly during the hypoglycaemic stage, compared with the euglycaemic or hyperglycaemic stages. There was no difference in platelet aggregation between the euglycaemic and hyperglycaemic stages. Platelet aggregation to all agonists increased during the hypoglycaemic stage compared with the hyperglycaemic period: thrombin–23.9%, ADP–30.6%, arachidonic acid–30.9%, collagen–69.4% and ristocetin–70.8%. During hypoglycaemia aggregation to ADP, arachidonic acid and collagen remained within normal limits (upper quartile); aggregation to thrombin was significantly above normal limits and aggregation to ristocetin remained significantly below lower limits. Protein S activity was significantly increased during hypoglycaemia compared with euglycaemia (p = 0.046) and hyperglycaemia (p = 0.046). Antithrombin-III activity decreased significantly at the euglycaemic and hypoglycaemic stages, compared with the hyperglycaemic period, but still remained significantly elevated above the upper threshold. Protein C and vWf activity did not change significantly.
Conclusions. In patients with type 1 diabetes platelet aggregation and protein S activity increases significantly at the hypoglycaemic stage of the hyperinsulinaemic–hypoglycaemic clamp. Platelet activation is directly caused by hypoglycaemia and not by decreasing glucose levels. Increased protein S activity is a compensatory response to platelet activation.
About the Authors
Iwona R. Jarek-MartynowaEndocrinology Research Centre
Russian Federation
MD, PhD
Mikhail Y. Martynov
Pirogov Russian National Research Medical University
Russian Federation
MD, PhD, Professor
Karina G. Sarkisova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation
MD, PhD student
Ekaterina O. Koksharova
Endocrinology Research Centre
Russian Federation
MD, research associate
Ekaterina E. Mishina
Endocrinology Research Centre
Russian Federation
MD, PhD student, research associate
Competing Interests:
Автор декларирует отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
Albina N. Yasamanova
Pirogov Russian National Research Medical University
Russian Federation
MD, PhD, Professor
Marina V. Shestakova
Endocrinology Research Centre
Russian Federation
MD, PhD, Professor
References
1. D'Addio F, Maffi P, Vezzulli P, et al. Islet transplantation stabilizes hemostatic abnormalities and cerebral metabolism in individuals with type 1 diabetes. Diabetes Care. 2014;37(1):267-276. doi: 10.2337/dc13-1663
2. Wisinski JA, Kimple ME. Platelet Dysfunction in Type 1 Diabetes: Stressing the Thromboxanes. Diabetes. 2016;65(2):349-351. doi: 10.2337/dbi15-0032
3. Wieczorek I, Pell ACH, McIver B, et al. Coagulation and fibrinolytic systems in type I diabetes: effects of venous occlusion and insulin-induced hypoglycaemia. Clin Sci (Lond). 1993;84(1):79-86. doi: 10.1042/cs0840079
4. Hu H, Li N, Yngen M, et al. Enhanced leukocyte-platelet cross-talk in Type 1 diabetes mellitus: relationship to microangiopathy. J Thromb Haemost. 2004;2(1):58-64. doi: 10.1111/j.1538-7836.2003.00525.x
5. Кособян Е.П., Ярек-Мартынова И.Р., Мартынов М.Ю., и др. Роль эндотелиальной дисфункции в развитии цереброваскулярного поражения у пациентов с сахарным диабетом // Сахарный диабет. – 2012. – Т. 15. – №1. – С. 42-48. [Kosobyan EP, Yarek-Martynova IR, Martynov MY, et al. Endothelial dysfunction in development of cerebrovascular disorders in patients with diabetes mellitus. Diabetes mellitus. 2012;15(1):42-48. (In Russ.)] doi: 10.14341/2072-0351-5978
6. Husted SE, Nielsen HK, Bak JF, Beck-Nielsen H. Antithrombin III activity, von Willebrand factor antigen and platelet function in young diabetic patients treated with multiple insulin injections versus insulin pump treatment. Eur J Clin Invest. 1989;19(s1):90-94. doi: 10.1111/j.1365-2362.1989.tb00312.x
7. Benedetti MM, Celleno R, Timi A, et al. Impaired endothelial antithrombotic activity following short-term interruption of continuous subcutaneous insulin infusion in type1 diabetic patients. Thromb Haemost. 2017;98(09):635-641. doi: 10.1160/th07-03-0201
8. Hunt KJ, Baker NL, Cleary PA, et al. Longitudinal Association Between Endothelial Dysfunction, Inflammation, and Clotting Biomarkers With Subclinical Atherosclerosis in Type 1 Diabetes: An Evaluation of the DCCT/EDIC Cohort. Diabetes Care. 2015;38(7):1281-1289. doi: 10.2337/dc14-287777
9. Schwarz HP, Schernthaner G, Griffin JH. Decreased plasma levels of protein S in well-controlled type I diabetes mellitus. Thromb Haemost. 1987;57(2):240-246.
10. Schernthaner G, Vukovich T, Knöbl P, et al. The effect of near-normoglycaemic control on plasma levels of coagulation factor VII and the anticoagulant proteins C and S in insulin-dependent diabetic patients. Br J Haematol. 1989;73(3):356-359. doi: 10.1111/j.1365-2141.1989.tb07752.x
11. Zaccardi F, Rizzi A, Petrucci G, et al. In Vivo Platelet Activation and Aspirin Responsiveness in Type 1 Diabetes. Diabetes. 2016;65(2):503-509. doi: 10.2337/db15-0936
12. Sabatier F, Darmon P, Hugel B, et al. Type 1 And Type 2 Diabetic Patients Display Different Patterns of Cellular Microparticles. Diabetes. 2002;51(9):2840-2845. doi: 10.2337/diabetes.51.9.2840
13. Salem MA, Adly AA, Ismail EA, et al. Platelets microparticles as a link between micro- and macro-angiopathy in young patients with type 1 diabetes. Platelets. 2015;26(7):682-688. doi: 10.3109/09537104.2015.1018880
14. Malachowska B, Tomasik B, Szadkowska A, et al. Altered platelets' morphological parameters in children with type 1 diabetes – a case-control study. BMC Endocr Disord. 2015;15:17. doi: 10.1186/s12902-015-0011-8
15. Gimenez M, Gilabert R, Monteagudo J, et al. Repeated episodes of hypoglycemia as a potential aggravating factor for preclinical atherosclerosis in subjects with type 1 diabetes. Diabetes Care. 2011;34(1):198-203. doi: 10.2337/dc10-1371
16. Gogitidze Joy N, Hedrington MS, Briscoe VJ, et al. Effects of acute hypoglycemia on inflammatory and pro-atherothrombotic biomarkers in individuals with type 1 diabetes and healthy individuals. Diabetes Care. 2010;33(7):1529-1535. doi: 10.2337/dc09-0354
17. Joy NG, Tate DB, Younk LM, Davis SN. Effects of Acute and Antecedent Hypoglycemia on Endothelial Function and Markers of Atherothrombotic Balance in Healthy Humans. Diabetes. 2015;64(7):2571-2580. doi: 10.2337/db14-1729
18. Hartley PS, Savill JS, Brown SB. Hypoglycaemia predisposes platelets to death by affecting calcium homeostasis and mitochondrial integrity. Platelets. 2007;18(2):103-112. doi: 10.1080/09537100600760822
19. Hutton RA, Mikhailidis D, Dormandy KM, Ginsburg J. Platelet aggregation studies during transient hypoglycaemia: a potential method for evaluating platelet function. J Clin Pathol. 1979;32(5):434-438. doi: 10.1136/jcp.32.5.434
20. Trovati M, Anfossi G, Cavalot F, et al. Studies on Mechanisms Involved in Hypoglycemia-Induced Platelet Activation. Diabetes. 1986;35(7):818-825. doi: 10.2337/diab.35.7.818
21. Lingenfelser T, Overkamp D, Renn W, et al. Insulin-associated modulation of neuroendocrine counterregulation, hypoglycemia perception, and cerebral function in insulin-dependent diabetes mellitus: evidence for an intrinsic effect of insulin on the central nervous system. J Clin Endocrinol Metab. 1996;81(3):1197-1205. doi: 10.1210/jcem.81.3.8772600
22. Blockmans D, Deckmyn H, Vermylen J. Platelet actuation. Blood Rev. 1995;9(3):143-156. doi: 10.1016/0268-960x(95)90020-9
23. Castoldi E, Hackeng TM. Regulation of coagulation by protein S. Curr Opin Hematol. 2008;15(5):529-536. doi: 10.1097/MOH.0b013e328309ec97
24. Kim HK, Kim JE, Park SH, et al. High coagulation factor levels and low protein C levels contribute to enhanced thrombin generation in patients with diabetes who do not have macrovascular complications. J Diabetes Complications. 2014;28(3):365-369. doi: 10.1016/j.jdiacomp.2014.01.006
25. Olson ST, Björk I. Regulation of thrombin by antithrombin and heparin cofactor II. In: Berliner LJ, editor. Thrombin: Structure and Function. New York: Plenum Press; 1992. p. 159-217.
26. Chiu PL, Bou-Assaf GM, Chhabra ES, et al. Mapping the interaction between factor VIII and von Willebrand factor by electron microscopy and mass spectrometry. Blood. 2015;126(8):935-938. doi: 10.1182/blood-2015-04-641688
27. Дёмина О.В., Ходонов А.А., Швец В.И., Варфоломеев С.Д. Агрегация тромбоцитов человека: молекулярно-кинетические механизмы и пути регуляции // Биологические мембраны: журнал мембранной и клеточной биологии. – 2002. – Т. 19. – №2. – С. 115-152. [Demina OV, Khodonov AA, Shvets VI, Varfolomeev SD. Human platelet aggregation process: molecular-kinetic mechanisms and the regulation ways. Biological membranes. Membrane & cell biology. 2002;19(2):115-152. (In Russ.)]
28. Шатурный В.И., Шахиджанов С.С., Свешникова А.Н., Пантелеев М.А. Активаторы, рецепторы и пути внутриклеточной сигнализации в тромбоцитах крови // Биомедицинская химия. – 2014. – Т. 60. – №2. – С. 182-200. [Shaturny VI, Shakhidzhanov SS, Sveshnikova AN, Panteleev MA. Activators, receptors and signal transduction pathways of blood platelets. Biomed Khim. 2014;60(2):182-200. (In Russ.)]
29. Wallén NH, Goodall AH, Li N, Hjemdahl P. Activation of haemostasis by exercise, mental stress and adrenaline: effects on platelet sensitivity to thrombin and thrombin generation. Clin Sci (Lond). 1999;97(1):27-35. doi: 10.1042/cs0970027
30. Stel HV, Sakariassen KS, Scholte BJ, et al. Characterization of 25 monoclonal antibodies to factor VIII-von Willebrand factor: relationship between ristocetin-induced platelet aggregation and platelet adherence to subendothelium. Blood. 1984;63(6):1408-1415.
31. Воронина Е.Н., Филипенко М.Л., Сергеевичев Д.С., Пикалов И.В. Мембранные рецепторы тромбоцитов: функции и полиморфизм // Информационный вестник ВОГиС. – 2006. – Т 10. – №3. – С. 553-564. [Voronina EN, Filipenko ML, Sergeyevichev DS, Pikalov IV. Platelet membrane glycoprotein receptors: functions and polymorphism. Informatsionnyi vestnik VOGiS. 2006;10(3):553-564. (In Russ.)]
32. Stavenuiter F, Gale AJ, Heeb MJ. Phosphorylation of protein S by platelet kinases enhances its activated protein C cofactor activity. FASEB J. 2013;27(7):2918-2925. doi: 10.1096/fj.12-225961
33. Khan MS, Singh P, Azhar A, et al. Serpin Inhibition Mechanism: A Delicate Balance between Native Metastable State and Polymerization. J Amino Acids. 2011;2011:606797. doi: 10.4061/2011/606797
34. Ceriello A, Esposito K, Ihnat M, et al. Simultaneous control of hyperglycemia and oxidative stress normalizes enhanced thrombin generation in type 1 diabetes. J Thromb Haemost. 2009;7(7):1228-1230. doi: 10.1111/j.1538-7836.2009.03445.x
Supplementary files
|
1. Fig. 1. Aggregational curve using the Multiplate system. Notes: AU - aggregation; AUC is the area under the curve. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(86KB)
|
Indexing metadata ▾ |
Review
For citations:
Jarek-Martynowa I.R., Martynov M.Y., Sarkisova K.G., Koksharova E.O., Mishina E.E., Yasamanova A.N., Shestakova M.V. Influence of hyperinsulinemic – hypoglycemic clamp on induced platelet aggregation, activity of physiological anticoagulants and von Willebrand factor in patients with type I diabetes. Diabetes mellitus. 2018;21(2):84-91.