Serum adipokine concentrations in patients with type 2 diabetes: the relationships with distribution, hypertrophy and vascularization of subcutaneous adipose tissue
Abstract
Academy of Sciences, Novosibirsk, Russia 2Novosibirsk State Medical University, Novosibirsk, Russia
BACKGROUND: Adipose tissue (AT) dysfunction plays an important role in metabolic disorders in obesity and type 2 diabetes. The role of distribution, hypertrophy and vascularization of AT in adipokine secretion disturbances remain to be clarified.
AIMS: To determine the relationships between serum concentrations of adipokines and the mass and distribution of AT, diameter of adipocytes and vascularization of subcutaneous AT in patients with type 2 diabetes.
MATERIALS AND METHODS: A total of 125 patients were examined, including 82 subjects with obesity. Thirty persons without diabetes and obesity, matched by sex and age, were acted as control. Concentrations of leptin, resistin, visfatin, adipsin and adiponectin in fasting serum were determined using multiplex analysis. Mass and distribution of AT was assessed by dual-energy X-ray absorptiometry. Samples of SAT were obtained from umbilical region using a knife biopsy in 25 patients and in 15 individuals who died in accidents. Blood and lymphatic vessels in SAT were revealed with immunohistochemistry, using antibody to CD-34 and podoplanin respectively. The volume and numerical density, ultrastructure of blood and lymphatic vessels, and mean diameter of subcutaneous adipocytes were evaluated.
RESULTS: Patients with diabetes, as compared to control, had significantly higher levels of leptin, resistin, adipsin and visfatin (all p<0.001). Adiponectin showed no differences. Concentrations of leptin, resistin, visfatin, adipsin and adiponectin correlated positively with gynoid fat mass. Additionally, leptin and adipsinshowed positive correlations with truncal and central abdominal fat mass. Concentration of leptin, but not other adipokines, was associated with hypertrophy of subcutaneous adipocytes. A decrease in volumetric density of microvessels(р=0.01) and increase in volume and numerical density of lymphatic vessels (both р=0.02) was observed in subcutaneous AT from diabetic subjects. The swelling of cytoplasm, mitochondria, cisterns of granular endoplasmic reticulum and reduced content of micropinocytotic vesicles was revealed in lymphatic capillaries. Resistin and visfatin showed inverse associations with density of microvessels.
CONCLUSION: Endocrine dysfunction of AT in patients with type 2 diabetes, manifested by elevation of serum concentrations of leptin, resistin, visfatin and adipsin, is associated with mass and distribution of AT, hypertrophy of subcutaneous adipocytes and vascularization abnormalities of subcutaneous AT.
About the Authors
Vadim V. KlimontovRussian Federation
MD, PhD, Professor
Dinara M. Bulumbaeva
Russian Federation
Junior research associate
Nataliya P. Bgatova
Russian Federation
PhD, Professor
Iuliia S. Taskaeva
Russian Federation
MD, Junior research associate
Nikolay B. Orlov
Russian Federation
MD, PhD, Senior research associate
Olga N. Fazullina
Russian Federation
MD, Junior research associate
Michael Y. Soluyanov
Russian Federation
MD, PhD, Senior research associate
Sergey V. Savchenko
Russian Federation
MD, PhD, Professor
Vladimir I. Konenkov
Russian Federation
MD, PhD, Professor, Academician of the Russian Academy of Sciences
References
1. Choe SS, Huh JY, Hwang IJ, et al. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders. Front Endocrinol (Lausanne). 2016;7:30. doi: https://doi.org/10.3389/fendo.2016.00030
2. Nicholson T, Church C, Baker DJ, Jones SW. The role of adipokines in skeletal muscle inflammation and insulin sensitivity. J Inflamm (Lond). 2018;15:9. doi: https://doi.org/10.1186/s12950-018-0185-8
3. Jaganathan R, Ravindran R, Dhanasekaran S. Emerging Role of Adipocytokines in Type 2 Diabetes as Mediators of Insulin Resistance and Cardiovascular Disease. Can J Diabetes. 2018;42(4):446-456 e441. doi: https://doi.org/10.1016/j.jcjd.2017.10.040
4. Oh K-J, Lee D, Kim W, et al. Metabolic Adaptation in Obesity and Type II Diabetes: Myokines, Adipokines and Hepatokines. Int J Mol Sci. 2016;18(1):8. doi: https://doi.org/10.3390/ijms18010008
5. Tanaka M, Itoh M, Ogawa Y, Suganami T. Molecular mechanism of obesity-induced ‘metabolic’ tissue remodeling. J Diabetes Investig. 2018;9(2):256-261. doi: https://doi.org/10.1111/jdi.12769
6. Ehrlund A, Mejhert N, Björk C, et al. Transcriptional Dynamics During Human Adipogenesis and Its Link to Adipose Morphology and Distribution. Diabetes. 2017;66(1):218-230. doi: https://doi.org/10.2337/db16-0631
7. Chowen JA, Amato MC, Pizzolanti G, et al. Visceral Adiposity Index (VAI) Is Predictive of an Altered Adipokine Profile in Patients with Type 2 Diabetes. PLoS ONE. 2014;9(3):e91969. doi: https://doi.org/10.1371/journal.pone.0091969
8. Климонтов В.В., Тян Н.В., Фазуллина О.Н., и др. Белки острой фазы и адипоцитокины в сыворотке крови у женщин с сахарным диабетом 2 типа: взаимосвязи с композитным составом тела и колебаниями гликемии // Терапевтический архив. — 2016. — Т. 88. — №10. — С. 35-41. [Klimontov VV, Tyan NV, Fazullina ON, et al. Acute-phase serum proteins and adipocytokines in women with type 2 diabetes mellitus: Relationships with body composition and blood glucose fluctuations. Ther Arch. 2016;88(10):35-41. (In Russ.)] doi: https://doi.org/10.17116/terarch2016881035-41
9. Liu X, Li X, Li C, et al. Study on regulation of adipokines on body fat distribution and its correlation with metabolic syndrome in type 2 diabetes mellitus. Minerva Endocrinol. 2019;44(3). doi: https://doi.org/10.23736/s0391-1977.17.02773-0
10. Коненков В.И., Климонтов В.В. Ангиогенез и васкулогенез при сахарном диабете: новые концепции патогенеза и лечения сосудистых осложнений // Сахарный диабет. — 2012. — Т. 15. — №4. — С. 17-27. [Konenkov VI, Klimontov VV. Vasculogenesis and angiogenesis in diabetes mellitus: novel pathogenetic concepts for treatment of vascular complications. Diabetes mellitus. 2012;15(4):17-27. (In Russ.)] doi: https://doi.org/10.14341/2072-0351-5533
11. Corvera S, Gealekman O. Adipose tissue angiogenesis: Impact on obesity and type-2 diabetes. Biochim Biophys Acta Mol Basis Dis. 2014;1842(3):463-472. doi: https://doi.org/10.1016/j.bbadis.2013.06.003
12. Engin A. Adipose Tissue Hypoxia in Obesity and Its Impact on Preadipocytes and Macrophages: Hypoxia Hypothesis. In: Engin A, Engin A, editors. Obesity and Lipotoxicity. Advances in Experimental Medicine and Biology. Vol. 960. Cham: Springer; 2017. p. 305-326. doi: https://doi.org/10.1007/978-3-319-48382-5_13
13. Miller NE, Michel CC, Nanjee MN, et al. Secretion of adipokines by human adipose tissue in vivo: partitioning between capillary and lymphatic transport. Am J Physiol Endocrinol Metab. 2011;301(4):E659-E667. doi: https://doi.org/10.1152/ajpendo.00058.2011
14. Дедов И.И., Шестакова М.В., Майоров А.Ю., и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. / Под ред. Дедова И.И., Шестаковой М.В., Майорова А.Ю. — 8-й вып. // Сахарный диабет. — 2017. — Т. 20. — №1S. — С. 1-112. [Dedov II, Shestakova MV, Mayorov AY, et al. Dedov II, Shestakova MV, Mayorov AY, editors. Standards of specialized diabetes care. 8th ed. Diabetes mellitus. 2017;20(1S):1-121. (In Russ.)] doi: https://doi.org/10.14341/DM20171S8
15. Parlee SD, Lentz SI, Mori H, MacDougald OA. Quantifying size and number of adipocytes in adipose tissue. Methods Enzymol. 2014;537:93-122. doi: https://doi.org/10.1016/B978-0-12-411619-1.00006-9
16. Goodpaster BH, Sparks LM. Metabolic Flexibility in Health and Disease. Cell Metab. 2017;25(5):1027-1036. doi: https://doi.org/10.1016/j.cmet.2017.04.015
17. Вербовой А.Ф., Цанава И.А., Вербовая Н.И. Адипокины и метаболические показатели у больных сахарным диабетом 2 типа в сочетании с подагрой // Ожирение и метаболизм. — 2016. — Т. 13. — №1. — C. 20-24. [Verbovoy AF, Tsanava IA, Verbovaya NI. Adipokines and metabolic parameters in patients with type 2 diabetes mellitus in combination with gout. Obesity and metabolism. 2016;13(1):20-24. (In Russ.)] doi: https://doi.org/10.14341/omet2016120-24
18. Legakis I, Mantzouridis T, Bouboulis G, Chrousos GP. Reciprocal changes of serum adispin and visfatin levels in patients with type 2 diabetes after an overnight fast. Arch Endocrinol Metab. 2016;60(1):76-78. doi: https://doi.org/10.1590/2359-3997000000147
19. Hammarstedt A, Gogg S, Hedjazifar S, et al. Impaired Adipogenesis and Dysfunctional Adipose Tissue in Human Hypertrophic Obesity. Physiol Rev. 2018;98(4):1911-1941. doi: https://doi.org/10.1152/physrev.00034.2017
20. Gealekman O, Guseva N, Hartigan C, et al. Depot-Specific Differences and Insufficient Subcutaneous Adipose Tissue Angiogenesis in Human Obesity. Circulation. 2011;123(2):186-194. doi: https://doi.org/10.1161/circulationaha.110.970145
21. Kolahdouzi S, Talebi-Garakani E, Hamidian G, Safarzade A. Exercise training prevents high-fat diet-induced adipose tissue remodeling by promoting capillary density and macrophage polarization. Life Sci. 2019;220:32-43. doi: https://doi.org/10.1016/j.lfs.2019.01.037
22. Акопян Ж.А., Шаронов Г.В., Кочегура Т.Н., и др. Влияние высокой концентрации глюкозы на способность мезенхимальных стромальных клеток контролировать рост кровеносных сосудов // Сахарный диабет. — 2011. — Т. 14. — №2. — С. 32-36. [Akopyan ZA, Sharonov GV, Kochegura TN, et al. The influence of high glucose concentration on the ability of mesenchymal stromal cells to stimulate blood vessel growth. Diabetes mellitus. 2011;14(2):32-36. (In Russ.)] doi: https://doi.org/10.14341/2072-0351-5631
23. Lefere S, Van Steenkiste C, Verhelst X, et al. Hypoxia-regulated mechanisms in the pathogenesis of obesity and non-alcoholic fatty liver disease. Cell Mol Life Sci. 2016;73(18):3419-3431. doi: https://doi.org/10.1007/s00018-016-2222-1
24. Коненков В.И., Климонтов В.В., Кузнецова И.В. Нарушения ангиогенеза и лимфангиогенеза при сахарном диабете // Архив патологии. — 2014. — Т. 76. — №2. — С. 55-59. [Konenkov VI, Klimontov VV, Kuznetsova IV. Impaired angiogenesis and lymphangiogenesis in diabetes mellitus. Arkh Patol. 2014;76(2):55-59. (In Russ.)]
25. García Nores GD, Cuzzone DA, Albano NJ, et al. Obesity but not high-fat diet impairs lymphatic function. Int J Obes. 2016;40(10):1582-1590. doi: https://doi.org/10.1038/ijo.2016.96
26. Abouelkheir GR, Upchurch BD, Rutkowski JM. Lymphangiogenesis: fuel, smoke, or extinguisher of inflammation’s fire? Exp Biol Med. 2017;242(8):884-895. doi: https://doi.org/10.1177/1535370217697385
27. Savetsky IL, Torrisi JS, Cuzzone DA, et al. Obesity increases inflammation and impairs lymphatic function in a mouse model of lymphedema. Am J Physiol Heart Circ Physiol. 2014;307(2):H165-H172. doi: https://doi.org/10.1152/ajpheart.00244.2014
28. Arngrim N, Simonsen L, Holst JJ, Bülow J. Reduced adipose tissue lymphatic drainage of macromolecules in obese subjects: a possible link between obesity and local tissue inflammation? Int J Obes. 2012;37(5):748-750. doi: https://doi.org/10.1038/ijo.2012.98
29. Escobedo N, Oliver G. The Lymphatic Vasculature: Its Role in Adipose Metabolism and Obesity. Cell Metab. 2017;26(4):598-609. doi: https://doi.org/10.1016/j.cmet.2017.07.020
30. Cucchi F, Rossmeislova L, Simonsen L, et al. A vicious circle in chronic lymphoedema pathophysiology? An adipocentric view. Obes Rev. 2017;18(10):1159-1169. doi: https://doi.org/10.1111/obr.12565
Supplementary files
|
1. Fig. 1. Research design. | |
Subject | ||
Type | Other | |
View
(453KB)
|
Indexing metadata ▾ |
|
2. Fig. 2. Schematic representation of the assessment of the distribution of adipose tissue by region in the Body Composition program. 1 - area android fat; 2 - region of gynoid fat. | |
Subject | ||
Type | Other | |
View
(251KB)
|
Indexing metadata ▾ |
|
3. Fig. 3. Visualization and density of lymphatic vessels in subcutaneous adipose tissue in patients with type 2 diabetes mellitus and in control. A - the lymphatic vessel is normal; B - lymphatic vessels in a patient with type 2 diabetes. Immunohistochemical staining for a marker of endotheliocytes of the lymphatic vessels, subplanin. SW x400; In - bulk density of lymphatic vessels, LDVv,%; G is the numerical density of the lymphatic vessels, LVDq, n; * - p <0.02 in comparison with the control group. | |
Subject | ||
Type | Other | |
View
(1MB)
|
Indexing metadata ▾ |
|
4. Fig. 4. The ultrastructural organization of the endothelial cells of the lymphatic and blood vessels of the adipose tissue of patients with type 2 diabetes. A - endothelium of the lymphatic capillary is normal; B - endothelium of the lymphatic capillary of a patient with type 2 diabetes and obesity. Outgrowths and protrusions of the luminal and basal surfaces of the endothelial cell of the lymphatic capillary. Contact with an adjacent endothelial cell (arrows); In - the endothelium of the blood capillary is normal; G - endothelium of the blood capillary of a patient with type 2 diabetes mellitus and obesity. Swelling of the cytoplasm of endotheliocytes, a decrease in the content of cytoplasmic organelles and vesicles. Electron microscopy. SW x10,000. | |
Subject | ||
Type | Other | |
View
(2MB)
|
Indexing metadata ▾ |
|
5. Климонтов_Адипокины_Фото 5 | |
Subject | ||
Type | Исследовательские инструменты | |
View
(1MB)
|
Indexing metadata ▾ |
|
6. Климонтов_Адипокины_Фото 6 | |
Subject | ||
Type | Исследовательские инструменты | |
View
(142KB)
|
Indexing metadata ▾ |
|
7. Fig. 1. Study design. | |
Subject | ||
Type | Other | |
View
(453KB)
|
Indexing metadata ▾ |
Review
For citations:
Klimontov V.V., Bulumbaeva D.M., Bgatova N.P., Taskaeva I.S., Orlov N.B., Fazullina O.N., Soluyanov M.Y., Savchenko S.V., Konenkov V.I. Serum adipokine concentrations in patients with type 2 diabetes: the relationships with distribution, hypertrophy and vascularization of subcutaneous adipose tissue. Diabetes mellitus. 2019;22(4):336-347. (In Russ.)