Features the interaction of functional and metabolic remodeling of myocardium in comorbid course of ischemic heart disease and 2 type diabetes mellitus
https://doi.org/10.14341/DM9735
Abstract
Background: Metabolic and structural changes in cardiomyocytes in diabetes mellitus lead to aggravation of contractile myocardial dysfunction in coronary heart disease (CHD). The contractility dysfunction of cardiomyocytes is determined by a change in the levels of sarcoplasmic reticulum (SR) Ca2+-ATPase and energetic supply of the cardiomyocytes.
Aims: To study the features of functional remodeling of the heart muscle in coronary heart disease with and without type 2 diabetes mellitus (DM2) depend on the level of Ca2+-ATPase and the activity of enzymes involved in energy metabolism.
Materials and methods: The work was performed on the heart biopsy of patients with CHD and patients with CHD combined with DM2. The inotropic reaction of myocardial strips on rest periods was assessed. The expression level of Ca2+-ATPase, the activity of enzymes succinate dehydrogenase (SDH) and lactate dehydrogenase (LDH) and the intensity of oxidative phosphorylation processes were determined.
Results: The interval-force relationship in patients with CHD with and without DM2 had both negative and positive dynamics. The positive dynamics corresponds to the "high content" of the Ca2+-ATPase and the negative dynamics corresponds to the "low content" were found. At the combined pathology the positive inotropic dynamics is more pronounced and corresponds to a higher protein level. In the patients myocardium with CHD the activity of SDH and LDH was higher, while the oxygen uptake rate by mitochondria was higher in the myocardium with combined pathology.
Conclusions: The potentiation of inotropic response of patient myocardium with CHD with and without DM2 corresponds to the "high level" of Ca2+-ATPase. In the combined pathology the inotropic capabilities of the myocardium are more expressed. In CHD the synthesis of ATP in cardiomyocytes is realized mainly due to glycolytic processes and Krebs cycle. In combined pathology the ATP synthesis is realized to a greater extent due to the oxidative phosphorylation.
About the Authors
Sergey A. AfanasievCardiology Research Institute, Tomsk NRMC
Russian Federation
MD, PhD, Professor
Dina S. Kondratieva
Cardiology Research Institute, Tomsk NRMC
Russian Federation
PhD in Biology, research associate
Margarita V. Egorova
Siberian State Medical University
Russian Federation
PhD in Biology
Shamil D. Akhmedov
Cardiology Research Institute, Tomsk NRMC
Russian Federation
MD, PhD, Professor
Olesya V. Budnikova
Cardiology Research Institute, Tomsk NRMC
Russian Federation
PhD student
Sergey V. Popov
Cardiology Research Institute, Tomsk NRMC
Russian Federation
MD, PhD, Professor
References
1. Heusch G, Libby P, Gersh B, et al. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet. 2014;383(9932):1933-1943. doi: 10.1016/s0140-6736(14)60107-0
2. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 2012;298:229-317. doi: 10.1016/B978-0-12-394309-5.00006-7
3. Kolwicz SC, Jr., Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res. 2013;113(5):603-616. doi: 10.1161/CIRCRESAHA.113.302095
4. Zima AV, Bovo E, Mazurek SR, et al. Ca handling during excitation-contraction coupling in heart failure. Pflugers Arch. 2014;466(6):1129-1137. doi: 10.1007/s00424-014-1469-3
5. Lehnart SE, Maier LS, Hasenfuss G. Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart. Heart Fail Rev. 2009;14(4):213-224. doi: 10.1007/s10741-009-9146-x
6. Кондратьева Д.С., Афанасьев С.А., Козлов Б.Н., Попов С.В. Функциональная недостаточность саркоплазматического ретикулума кардиомиоцитов при хронических патологиях сердца // Бюллетень Федерального Центра сердца, крови и эндокринологии им. В.А. Алмазова. — 2012. — № 2. — С. 61-65. [Kondratieva DS, Afanasiev SA, Koslov BN, Popov SV. Functional insufficiency of the sarcoplasmic reticulum of cardiomyocytes in chronic heart disease. Biulleten' FTSSKĖ im. V.A. Almazova. 2012;(2):61-65. (In Russ.)]
7. Pieske B, Sutterlin M, Schmidt-Schweda S, et al. Diminished post-rest potentiation of contractile force in human dilated cardiomyopathy. Functional evidence for alterations in intracellular Ca2+ handling. J Clin Invest. 1996;98(3):764-776. doi: 10.1172/JCI118849
8. Talukder MA, Kalyanasundaram A, Zuo L, et al. Is reduced SERCA2a expression detrimental or beneficial to postischemic cardiac function and injury? Evidence from heterozygous SERCA2a knockout mice. Am J Physiol Heart Circ Physiol. 2008;294(3):H1426-1434. doi: 10.1152/ajpheart.01016.2007
9. Lou Q, Janardhan A, Efimov IR. Remodeling of calcium handling in human heart failure. Adv Exp Med Biol. 2012;740:1145-1174. doi: 10.1007/978-94-007-2888-2_52
10. Vangheluwe P, Wuytack F. Improving cardiac Ca(+)(2) transport into the sarcoplasmic reticulum in heart failure: lessons from the ubiquitous SERCA2b Ca(+)(2) pump. Biochem Soc Trans. 2011;39(3):781-787. doi: 10.1042/BST0390781
11. Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383(9922):1068-1083. doi: 10.1016/s0140-6736(13)62154-6
12. Fontes-Carvalho R, Ladeiras-Lopes R, Bettencourt P, et al. Diastolic dysfunction in the diabetic continuum: association with insulin resistance, metabolic syndrome and type 2 diabetes. Cardiovasc Diabetol. 2015;14:4. doi: 10.1186/s12933-014-0168-x
13. Miao Y, Zhang W, Zhongi Y, Ma X. Diastolic function of the right ventricle is impaired in experimental type 2 diabetic rat models. Turk J Med Sci. 2014;44(3):448-453.
14. Zhao SM, Wang YL, Guo CY, et al. Progressive decay of Ca2+ homeostasis in the development of diabetic cardiomyopathy. Cardiovasc Diabetol. 2014;13:75. doi: 10.1186/1475-2840-13-75
15. Дедов И.И., Шестакова М.В., Майоров А.Ю., и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом / Под ред. Дедова И.И., Шестаковой М.В., Майорова А.Ю. – 8-й выпуск // Сахарный диабет. — 2017. — Т. 20. — №1S. — C. 1-121. [Dedov II, Shestakova MV, Mayorov AY, et al. Dedov II, Shestakova MV, Mayorov AY, editors. Standards of specialized diabetes care. 8th ed. Diabetes mellitus. 2017;20(1S):1-121. (In Russ.)] doi: 10.14341/DM20171S8
16. Ravens U, Mahl C, Ohler A, et al. Mechanical restitution and recirculation fraction in cardiac myocytes and left ventricular muscle of adult rats. Basic Res Cardiol. 1996;91(2):123-130. doi: 10.1007/bf00799684
17. Амвросова М.А., Борисова Н.А., Дьячкова Т.А., Королева С.А. Современные представления о сахарном диабете 2 типа. Приверженность к лечению пациентов с диагнозом: сахарный диабет 2 типа // Научно-методический электронный журнал «Концепт». — 2017. — Т. 2. — С. 274-278. [Amvrosova MA, Borisova NA, D'yachkova TA, Koroleva SA. Sovremennye predstavleniya o sakharnom diabete 2 tipa. Priverzhennost' k lecheniyu patsientov s diagnozom: sakharnyy diabet 2 tipa. Nauchno-metodicheskiy elektronnyy zhurnal «Kontsept». 2017;2:274-278. (In Russ.)]
18. Репинская И.Н., Огир Т.В., Доля Е.М., и др. Изучение приверженности больных сахарным диабетом 2 типа и артериальной гипертензией к достижению целевых уровней артериального давления и пути ее повышения // Лечащий врач. — 2018. — №3. — С. 22-24. [Repinskaya IN, Ogir TV, Dolya EM, et al. Izuchenie priverzhennosti bol'nykh sakharnym diabetom 2 tipa i arterial'noy gipertenziey k dostizheniyu tselevykh urovney arterial'nogo davleniya i puti ee povysheniya. Practitioner. 2018;(3):22.-24 (In Russ.)]
19. Дедов И.И., Шестакова М.В., Викулова О.К., и др. Сахарный диабет в Российской Федерации: распространенность, заболеваемость, смертность, параметры углеводного обмена и структура сахароснижающей терапии по данным Федерального регистра сахарного диабета, статус 2017 г. // Сахарный диабет. — 2018. — Т. 21. — №3. — С. 144-159. [Dedov II, Shestakova MV, Vikulova OK, et al. Diabetes mellitus in Russian Federation: prevalence, morbidity, mortality, parameters of glycaemic control and structure of glucose lowering therapy according to the Federal Diabetes Register, status 2017. Diabetes mellitus. 2018;21(3):144-159. (In Russ.)] doi: 10.14341/DM9686
20. Wu SN, Shen AY, Hwang TL. Analysis of mechanical restitution and post-rest potentiation in isolated rat atrium. Chin J Physiol. 1996;39(1):23-29.
21. Maier LS, Barckhausen P, Weisser J, et al. Ca(2+) handling in isolated human atrial myocardium. Am J Physiol Heart Circ Physiol. 2000;279(3):H952-958. doi: 10.1152/ajpheart.2000.279.3.H952
22. Gorski PA, Ceholski DK, Hajjar RJ. Altered myocardial calcium cycling and energetics in heart failure--a rational approach for disease treatment. Cell Metab. 2015;21(2):183-194. doi: 10.1016/j.cmet.2015.01.005
23. Bers DM, Eisner DA, Valdivia HH. Sarcoplasmic reticulum Ca2+ and heart failure: roles of diastolic leak and Ca2+ transport. Circ Res. 2003;93(6):487-490. doi: 10.1161/01.RES.0000091871.54907.6B
24. Pieske B, Maier LS, Schmidt-Schweda S. Sarcoplasmic reticulum Ca 2+ load in human heart failure. Basic Res Cardiol. 2002;97(7):1-1. doi: 10.1007/s003950200032
25. Park WJ, Oh JG. SERCA2a: a prime target for modulation of cardiac contractility during heart failure. BMB Rep. 2013;46(5):237-243. doi: 10.5483/BMBRep.2013.46.5.077
26. Yano M, Yamamoto T, Ikeda Y, Matsuzaki M. Mechanisms of Disease: ryanodine receptor defects in heart failure and fatal arrhythmia. Nat Clin Pract Cardiovasc Med. 2006;3(1):43-52. doi: 10.1038/ncpcardio0419
27. Kranstuber AL, del Rio C, Biesiadecki BJ, et al. Advanced glycation end product cross-link breaker attenuates diabetes-induced cardiac dysfunction by improving sarcoplasmic reticulum calcium handling. Front Physiol. 2012;3. doi: 10.3389/fphys.2012.00292
28. Satoh N, Sato T, Shimada M, et al. Lusitropic effect of MCC-135 is associated with improvement of sarcoplasmic reticulum function in ventricular muscles of rats with diabetic cardiomyopathy. J Pharmacol Exp Ther. 2001;298(3):1161-1166.
29. Кондратьева Д.С., Афанасьев С.А., Реброва Т.Ю., и др. Ритмоинотропные реакции миокарда крыс с постинфарктным кардиосклерозом на фоне стрептозотоцин-индуцированного диабета // Бюллетень экспериментальной биологии и медицины. — 2009. — Т. 148. — №8. — С. 143-146. [Kondrat'eva DS, Afanas'ev SA, Rebrova TY, et al. Ritmoinotropnye reaktsii miokarda krys s postinfarktnym kardiosklerozom na fone streptozototsin-indutsirovannogo diabeta. Biull Eksp Biol Med. 2009;148(8):143-146. (In Russ.)]
30. Chen H, Shen WL, Wang XH, et al. Paradoxically enhanced heart tolerance to ischaemia in type 1 diabetes and role of increased osmolarity. Clin Exp Pharmacol Physiol. 2006;33(10):910-916. doi: 10.1111/j.1440-1681.2006.04463.x
31. Zima AV, Kockskamper J, Blatter LA. Cytosolic energy reserves determine the effect of glycolytic sugar phosphates on sarcoplasmic reticulum Ca2+ release in cat ventricular myocytes. J Physiol. 2006;577(Pt 1):281-293. doi: 10.1113/jphysiol.2006.117242
32. Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res. 2013;113(6):709-724. doi: 10.1161/CIRCRESAHA.113.300376
33. Афанасьев С.А., Кондратьева Д.С., Егорова М.В., Попов С.В. Сравнительное исследование изменений энергетического метаболизма в кардиомиоцитах крыс при постинфарктном кардиосклерозе и сахарном диабете // Бюллетень экспериментальной биологии и медицины. — 2013. — Т. 156. — №8. — С. 149-152. [Afanas'ev SA, Kondrat'eva DS, Egorova MV, Popov SV. Sravnitel'noe issledovanie izmeneniy energeticheskogo metabolizma v kardiomiotsitakh krys pri postinfarktnom kardioskleroze i sakharnom diabete. Biull Eksp Biol Med. 2013;156(8):149-152. (In Russ.)]
Supplementary files
|
1. Fig. 1. Mechanisms of contraction of isolated myocardial trabeculae of patients. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(61KB)
|
Indexing metadata ▾ |
|
2. Fig. 2. Mechanical restitution of myocardial muscle strips in patients with type I inotropic reaction. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(55KB)
|
Indexing metadata ▾ |
|
3. Fig. 3. Mechanical myocardial restitution of patients with type II inotropic reaction. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(64KB)
|
Indexing metadata ▾ |
|
4. Fig. 4. SERCA2a level of cardiomyocytes in patients with ischemic heart disease with and without type 2 diabetes. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(41KB)
|
Indexing metadata ▾ |
|
5. Fig. 5. The activity of the enzymes lactate dehydrogenase and succinate dehydrogenase in the myocardium of patients with ischemic heart disease with and without type 2 diabetes. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(51KB)
|
Indexing metadata ▾ |
Review
For citations:
Afanasiev S.A., Kondratieva D.S., Egorova M.V., Akhmedov Sh.D., Budnikova O.V., Popov S.V. Features the interaction of functional and metabolic remodeling of myocardium in comorbid course of ischemic heart disease and 2 type diabetes mellitus. Diabetes mellitus. 2019;22(1):25-34. (In Russ.) https://doi.org/10.14341/DM9735

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).