Decrease of cardiovascular risk in patients with type 2 diabetes: review of the common strategies and clinical studies
https://doi.org/10.14341/DM9570
Abstract
Military Medical Academy of S.M. Kirov, Saint-Petersburg, Russia
Recent clinical trials about the cardiovascular safety of empagliflozin and liraglutide demonstrated a convincing lowering effect on mortality from cardiovascular causes among the patients with type 2 diabetes. These findings resulted in many questions about why this phenomenon was seen in two drugs with widely different mechanisms of functioning. It is important to note that the glucose-lowering effect was moderate, although a feature seen in both empagliflozin and liraglutide was their ability to increase insulin sensitivity. In many fundamental studies, this feature was associated with a reduction of cardiovascular risks. Insulin resistance, which has always been a pathophysiological base for the development of cardiovascular disease in patients with type 2 diabetes, is a topic for this report. Different methods to manage insulin resistance, including lifestyle changes, drug treatment and metabolic surgery, are discussed. Furthermore, the most common features of glucose-lowering drugs are analysed, including protective effects for cardiovascular outcomes in patients with type 2 diabetes presented in randomised clinical trials. Studies include the United Kingdom Prospective Diabetes Study (UKPDS), PROspective pioglitAzone Clinical Trial In macroVascular Events (PROactive), Insulin Resistance Intervention After Stroke (IRIS), Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results (LEADER) and the Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME). The current study shows that the potential to reduce the risk of cardiovascular disease is determined not only by effective lowering of glucose but also by the ability to lower insulin resistance, which causes a paradigm shift in the management of type 2 diabetes.
Keywords
About the Authors
Vladimir V. SalukhovMilitary Medical Academy of S.M. Kirov
Russian Federation
MD, PhD
Competing Interests:
No conflict of interest
Yurii Sh. Khalimov
Military Medical Academy of S.M. Kirov
Russian Federation
MD, PhD, Professor
Competing Interests:
No conflict of interest
Sergey B. Shustov
Military Medical Academy of S.M. Kirov
Russian Federation
MD, PhD, Professor
Competing Interests:
No conflict of interest
Dmitriy V. Kadin
Military Medical Academy of S.M. Kirov
Russian Federation
MD, PhD
Competing Interests:
No conflict of interest
References
1. National Center for Chronic Disease Prevention and Health Promotion. National Diabetes Statistics Report: Estimates of Diabetes and its Burden in the United States [Internet]. 2014 [cited 2018 Jun 20]. Available from: https://www.cdc.gov/diabetes/pdfs/data/2014-report-estimates-of-diabetes-and-its-burden-in-the-united-states.pdf.
2. Beckman JA, Paneni F, Cosentino F, Creager MA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. Eur Heart J. 2013;34(31):2444-2452. doi:10.1093/eurheartj/eht142.
3. Халимов Ю.Ш., Салухов В.В. Кардиоваскулярная безопасность современных инсулинов: есть ли повод для оптимизма? // Эндокринология: новости, мнения, обучение. – 2014. – №3. – С. 24-29. [Khalimov YS, Salukhov VV. Cardiovascular safety of modern insulin analogues: is there a reason for optimism? Endokrinologiya: novosti, mneniya, obuchenie. 2014;(3):24-29. (In Russ.)]
4. Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773-795. doi: 10.2337/db09-9028
5. Reaven GM. Insulin resistance/compensatory hyperinsulinemia, essential hypertension, and cardiovascular disease. J Clin Endocrinol Metab. 2003;88(6):2399-2403. doi: 10.1210/jc.2003-030087
6. Соколова Л.А., Иевская Е.В. Инсулинорезистентность как фактор риска сердечно-сосудистых заболеваний // Трансляционная медицина. – 2015. – №2. – С. 32-38. [Sokolova LA, Ievskaya EV. Insulin resistance as risk factor of cardiovascular diseases. Translational medicine. 2015;(2):32-38. (In Russ.)]
7. Obunai K, Jani S, Dangas GD. Cardiovascular morbidity and mortality of the metabolic syndrome. Med Clin North Am. 2007;91(6):1169-1184, x. doi: 10.1016/j.mcna.2007.06.003
8. Stern MP. Diabetes and Cardiovascular Disease: The "Common Soil" Hypothesis. Diabetes. 1995;44(4):369-374. doi:10.2337/diab.44.4.369
9. DeFronzo RA, Gunnarsson R, Bjorkman O, et al. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985;76(1):149-155. doi: 10.1172/JCI111938
10. Nolan CJ, Ruderman NB, Kahn SE, et al. Insulin resistance as a physiological defense against metabolic stress: implications for the management of subsets of type 2 diabetes. Diabetes. 2015;64(3):673-686. doi: 10.2337/db14-0694
11. Raghavan VA. Insulin resistance and atherosclerosis. Heart Fail Clin. 2012;8(4):575-587. doi: 10.1016/j.hfc.2012.06.014
12. Chagas Acp RL. Insulin Resistance, Type 2 Diabetes and Atherosclerosis. J Diabetes Metab. 2014;5(12). doi: 10.4172/2155-6156.1000464
13. Kanzaki M. Insulin Receptor Signals Regulating GLUT4 Translocation and Actin Dynamics. Endocr J. 2006;53(3):267-293. doi:10.1507/endocrj.KR-65
14. Pepine CJ. The impact of nitric oxide in cardiovascular medicine: untapped potential utility. Am J Med. 2009;122(5 Suppl):S10-15. doi:10.1016/j.amjmed.2009.03.003
15. Zhang Z, Liu H, Liu J. Akt activation: A potential strategy to ameliorate insulin resistance. Diabetes Res Clin Pract. 2017. doi:10.1016/j.diabres.2017.10.004
16. Cusi K, Maezono K, Osman A, et al. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest. 2000;105(3):311-320. doi: 10.1172/JCI7535
17. Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333-336. doi:10.1038/nature01137
18. Lee YH, Giraud J, Davis RJ, White MF. c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem. 2003;278(5):2896-2902. doi: 10.1074/jbc.M208359200
19. Wilding JPH. The importance of weight management in type 2 diabetes mellitus. Int J Clin Pract. 2014;68(6):682-691. doi:10.1111/ijcp.12384
20. Look ARG, Wing RR, Bolin P, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;369(2):145-154. doi: 10.1056/NEJMoa1212914
21. Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: a post-hoc analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 2016;4(11):913-921. doi: 10.1016/s2213-8587(16)30162-0
22. Hamdy O, Mottalib A, Morsi A, et al. Long-term effect of intensive lifestyle intervention on cardiovascular risk factors in patients with diabetes in real-world clinical practice: a 5-year longitudinal study. BMJ Open Diabetes Res Care. 2017;5(1):e000259. doi:10.1136/bmjdrc-2016-000259
23. Lean MEJ, Leslie WS, Barnes AC, et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet. 2018;391(10120):541-551. doi: 10.1016/s0140-6736(17)33102-1
24. Griffin SJ, Leaver JK, Irving GJ. Impact of metformin on cardiovascular disease: a meta-analysis of randomised trials among people with type 2 diabetes. Diabetologia. 2017;60(9):1620-1629. doi:10.1007/s00125-017-4337-9
25. Paneni F, Luscher TF. Cardiovascular Protection in the Treatment of Type 2 Diabetes: A Review of Clinical Trial Results Across Drug Classes. Am J Cardiol. 2017;120(1S):S17-S27. doi:10.1016/j.amjcard.2017.05.015
26. Jensen JB, Gormsen LC, Sundelin E, et al. Organ-specific uptake and elimination of metformin can be determined in vivo in mice and humans by PET-imaging using a novel 11C-metformin tracer. In: Proceedings of the ADA 75th Scientific Sessions; 2015 Jun 5-9; Boston.
27. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577-1585. doi: 10.1007/s00125-017-4342-z
28. Soliman GA, Steenson SM, Etekpo AH. Effects of Metformin and a Mammalian Target of Rapamycin (mTOR) ATP-Competitive Inhibitor on Targeted Metabolomics in Pancreatic Cancer Cell Line. Metabolomics (Los Angel). 2016;6(3). doi: 10.4172/2153-0769.1000183
29. Bajaj M, Baig R, Suraamornkul S, et al. Effects of pioglitazone on intramyocellular fat metabolism in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95(4):1916-1923. doi:10.1210/jc.2009-0911
30. Shannon CE, Daniele G, Galindo C, et al. Pioglitazone inhibits mitochondrial pyruvate metabolism and glucose production in hepatocytes. FEBS J. 2017;284(3):451-465. doi: 10.1111/febs.13992
31. Saremi A, Schwenke DC, Buchanan TA, et al. Pioglitazone slows progression of atherosclerosis in prediabetes independent of changes in cardiovascular risk factors. Arterioscler Thromb Vasc Biol. 2013;33(2):393-399. doi: 10.1161/ATVBAHA.112.300346
32. Dormandy JA, Charbonnel B, Eckland DJA, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279-1289. doi: 10.1016/s0140-6736(05)67528-9
33. Kernan WN, Viscoli CM, Furie KL, et al. Pioglitazone after Ischemic Stroke or Transient Ischemic Attack. N Engl J Med. 2016;374(14):1321-1331. doi: 10.1056/NEJMoa1506930
34. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457-2471. doi: 10.1056/NEJMoa072761
35. Erdmann E, Song E, Spanheimer R, et al. Observational follow-up of the PROactive study: a 6-year update. Diabetes Obes Metab. 2014;16(1):63-74. doi: 10.1111/dom.12180
36. Kongwatcharapong J, Dilokthornsakul P, Nathisuwan S, et al. Effect of dipeptidyl peptidase-4 inhibitors on heart failure: A meta-analysis of randomized clinical trials. Int J Cardiol. 2016;211:88-95. doi:10.1016/j.ijcard.2016.02.146
37. Nauck MA, Meier JJ. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol. 2016;4(6):525-536. doi: 10.1016/s2213-8587(15)00482-9
38. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375(4):311-322. doi: 10.1056/NEJMoa1603827
39. Marso SP, Bain SC, Consoli A, et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2016;375(19):1834-1844. doi: 10.1056/NEJMoa1607141
40. DeFronzo RA, Hompesch M, Kasichayanula S, et al. Characterization of renal glucose reabsorption in response to dapagliflozin in healthy subjects and subjects with type 2 diabetes. Diabetes Care. 2013;36(10):3169-3176. doi: 10.2337/dc13-0387
41. Inzucchi SE, Zinman B, Wanner C, et al. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab Vasc Dis Res. 2015;12(2):90-100. doi:10.1177/1479164114559852
42. Ferrannini E, Muscelli E, Frascerra S, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014;124(2):499-508. doi: 10.1172/JCI72227
43. Baker WL, Smyth LR, Riche DM, et al. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: a systematic review and meta-analysis. J Am Soc Hypertens. 2014;8(4):262-275 e269. doi:10.1016/j.jash.2014.01.007
44. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117-2128. doi: 10.1056/NEJMoa1504720
45. Демидова Т.Ю., Салухов В.В. Эмпаглифлозин: новая эра в лечении сахарного диабета 2 типа // Терапия. – 2016. – №4. – С. 6-16. [Demidova TY, Salukhov VV. Empagliflozin: a new era in the treatment of diabetes mellitus type 2. Therapy. 2016;(4):6-16. (In Russ.)]
46. Салухов В.В., Демидова Т.Ю. Эмпаглифлозин как новая стратегия управления исходами у пациентов с сахарным диабетом 2 типа и высоким кардиоваскулярным риском. // Сахарный диабет. – 2016. – Т. 19. – №6. – С. 494-510. [Salukhov VV, Demidova TY. Empagliflozin as a new management strategy on outcomes in patients with type 2 diabetes mellitus. Diabetes Mellitus. 2016;19(6):494-510. (In Russ.)] doi: 10.14341/DM8216
47. Mizuno Y, Harada E, Nakagawa H, et al. The diabetic heart utilizes ketone bodies as an energy source. Metabolism. 2017;77:65-72. doi:10.1016/j.metabol.2017.08.005
48. Mudaliar S, Alloju S, Henry RR. Can a Shift in Fuel Energetics Explain the Beneficial Cardiorenal Outcomes in the EMPA-REG OUTCOME Study? A Unifying Hypothesis. Diabetes Care. 2016;39(7):1115-1122. doi: 10.2337/dc16-0542
49. Kruljac I, Cacic M, Cacic P, et al. Diabetic ketosis during hyperglycemic crisis is associated with decreased all-cause mortality in patients with type 2 diabetes mellitus. Endocrine. 2017;55(1):139-143. doi: 10.1007/s12020-016-1082-7
50. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017;377(7):644-657. doi: 10.1056/NEJMoa1611925
51. Халимов Ю.Ш., Агафонов П.В., Кузьмич В.Г. Роль и место дапаглифлозина в управлении сахарным диабетом 2-го типа: от теории к практике // Медицинский совет. – 2017. – №3. – С. 22-30. [Khalimov YS, Agafonov PV, Kuzmich VG. Role and place of dapagliflozin in the management of 2nd type diabetes: from theory to practice. Meditsinskiy sovet. 2017;(3):22-30. (In Russ.)] doi:10.21518/2079-701X-2017-3-22-30
52. Салухов В.В., Ильинский Н.С., Васильев Е.В., и др. Возможности метаболической хирургии в лечении сахарного диабета 2 типа у больных СД2 с алиментарным ожирением 1 степени // Сахарный диабет. – 2018. – Т. 21. – №1. – С. 15-25. [Salukhov VV, Ilinskii NS, Vasil'ev EV, et al. Possibilities of metabolic surgery for the treatment of type 2 diabetes mellitus in patients with grade 1 alimentary obesity. Diabetes mellitus. 2018;21(1):15-25. (In Russ.)] doi: 10.14341/DM9292.
53. Rubino F, Schauer PR, Kaplan LM, Cummings DE. Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action. Annu Rev Med. 2010;61:393-411. doi:10.1146/annurev.med.051308.105148
54. Салухов В.В., Блэк М.С., Барсуков А.В., и др. Перспективы бариатрических вмешательств у пациентов с метаболическим синдромом // Consilium Medicum. – 2017. – Т. 19. – №10. – С. 83-89. [Salukhov VV, Black MS, Barsukov AV, et al. Prospects of bariatric interventions in patients with metabolic syndrome. Consilium Medicum. 2017;19(10):83-89. (In Russ.)] doi: 10.26442/2075-1753_19.10.123-131
55. Heneghan HM, Meron-Eldar S, Brethauer SA, et al. Effect of bariatric surgery on cardiovascular risk profile. Am J Cardiol. 2011;108(10):1499-1507. doi: 10.1016/j.amjcard.2011.06.076
56. Vest AR, Heneghan HM, Agarwal S, et al. Bariatric surgery and cardiovascular outcomes: a systematic review. Heart. 2012;98(24):1763-1777. doi: 10.1136/heartjnl-2012-301778
57. Sjostrom L. Review of the key results from the Swedish Obese Subjects (SOS) trial – a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273(3):219-234. doi: 10.1111/joim.12012
58. Plecka Ostlund M, Marsk R, Rasmussen F, et al. Morbidity and mortality before and after bariatric surgery for morbid obesity compared with the general population. Br J Surg. 2011;98(6):811-816. doi: 10.1002/bjs.7416
59. Chang S-H, Stoll CRT, Song J, et al. The Effectiveness and Risks of Bariatric Surgery. JAMA Surg. 2014;149(3):275. doi: 10.1001/jamasurg.2013.3654
60. Introduction: Standards of Medical Care in Diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S1-S2. doi: 10.2337/dc18-Sint01
Supplementary files
![]() |
1. Стратегии снижения КВР | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(506KB)
|
Indexing metadata ▾ |
|
2. Fig. 1. Mechanism of intracellular action of insulin (adapted [11]). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(815KB)
|
Indexing metadata ▾ |
|
3. Fig. 2. Change in the concentration of insulin in the blood plasma at a single and chronic (for 4 weeks) intake of empagliflozin | |
Subject | ||
Type | Исследовательские инструменты | |
View
(113KB)
|
Indexing metadata ▾ |
|
4. Fig. 3. Scheme of application of the main strategies for correcting insulin resistance in patients with type 2 diabetes mellitus | |
Subject | ||
Type | Исследовательские инструменты | |
View
(227KB)
|
Indexing metadata ▾ |
Review
For citations:
Salukhov V.V., Khalimov Yu.Sh., Shustov S.B., Kadin D.V. Decrease of cardiovascular risk in patients with type 2 diabetes: review of the common strategies and clinical studies. Diabetes mellitus. 2018;21(3):193-205. (In Russ.) https://doi.org/10.14341/DM9570

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).