Management of diabetes mellitus. The new period of self-control: detection of glucose trends and patterns
https://doi.org/10.14341/DM8254
Abstract
Modern representation of self-monitoring blood glucose can be characterised by new technologies introduced in recent years, including tools to identify trends and patterns of glycaemia (PatternAlert ™). These technologies simplify self-monitoring and help avoid errors in the interpretation of blood glucose levels in patients. This study examines the primary trends in the management and control of diabetes, as well as the strengths and weaknesses of the control of glycated haemoglobin (HbA1c). In addition, this study raises broader questions on self-control in patients with diabetes mellitus, which are beyond the issues of the normalisation of blood glucose levels.
About the Authors
Nina A. PetuninaI.M. Sechenov First Moscow State Medical University
Russian Federation
MD, PhD, Professor
Ekaterina V. Goncharova
I.M. Sechenov First Moscow State Medical University
Russian Federation
MD, PhD, assistant lecturer
Anna L. Terekhova
I.M. Sechenov First Moscow State Medical University
Russian Federation
MD, PhD, assistant lecturer
References
1. Diabetes Control and Complications Trial Research Group; Nathan DM, Genuth S, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group (DCCT). N Engl J Med. 1993;329(14):977-986. doi: 10.1056/NEJM199309303291401
2. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837–853. doi: 10.1016/S0140-6736(98)07019-6
3. The Diabetes Control and Complications Trial Research Group. Hypoglycemia in the the Diabetes Control and Complications Trial. Diabetes. 1997;46(2):271-286. doi: 10.2337/diab.46.2.271
4. Action to Control Cardiovascular Risk in Diabetes Study Group; Gerstein HC, Miller ME, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–2559. doi: 10.1056/NEJMoa0802743
5. Desouza CV, Bolli GB, Fonseca V. Hypoglycemia, diabetes, and cardiovascular events. Diabetes Care. 2010;33(6):1389–1394. doi: 10.2337/dc09-2082
6. Cryer PE. The barrier of hypoglycemia in diabetes. Diabetes. 2008;57(12):3169–3176. doi: 10.2337/db08-1084
7. Дедов И.И., Шестакова М.В., Майоров А.Ю., и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом / Под редакцией И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. – 8-й выпуск // Сахарный диабет. – 2017. – Т. 20. – №1S. – C. 1-121. [Dedov II, Shestakova MV, Mayorov AY, Vikulova OK, Galstyan GR, Kuraeva TL, et al. Standards of specialized diabetes care. Edited by Dedov II, Shestakova MV, Mayorov AY. 8th edition. Diabetes mellitus. 2017;20(1S):1-121. (In Russ.)] doi: 10.14341/DM8146
8. ГОСТ ISO 15197-2011 Системы диагностические in vitro. Требования к системам мониторного наблюдения за концентрацией глюкозы в крови для самоконтроля при лечении сахарного диабета. [GOST ISO 15197-2011 In vitro diagnostic test systems. Requirements for blood glucose monitoring systems for self-testing in managing diabetes mellitus. (In Russ.)] Доступно по: http://docs.cntd.ru/document/1200098672. Ссылка активна на 09.12.2016.
9. International Organization for Standardization (ISO). ISO 15197:2013. In vitro diagnostic test systems—requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus. Available from: www.iso.org/obp/ui/#iso:std:iso:15197:ed-2:v1:en. Accessed April 8, 2016.
10. ГОСТ Р ИСО 15197-2015 Тест-системы для диагностики in vitro. Требования к системам мониторинга глюкозы в крови для самоконтроля при лечении сахарного диабета (электронный ресурс). [GOST R ISO 15197-2015 In vitro diagnostic test systems. Requirements for blood glucose monitoring systems for self-testing in managing diabetes mellitus. (In Russ.)] Доступно по: http://docs.cntd.ru/document/1200120137. Ссылка активна на 09.12.2016.
11. Parkes JL, Slatin SL, Pardo S, Ginsberg BH. A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose. Diabetes Care. 2000;23(8):1143-1148. doi: 10.2337/diacare.23.8.1143
12. Freckmann G, Schmid C, Baumstark A, et al. Analytical Performance Requirements for Systems for Self-Monitoring of Blood Glucose With Focus on System Accuracy: Relevant Differences Among ISO 15197:2003, ISO 15197:2013, and Current FDA Recommendations. J Diabetes Sci Technol. 2015;9(4):885-894. doi: 10.1177/1932296815580160
13. American Diabetes Association. Standards of medical care in diabetes – 2016. Glycemic targets. Diabetes Care. 2016;39(Suppl 1):39–46. doi 10.2337/dc16-S008
14. Frier BM. Defining hypoglycaemia: what level has clinical relevance? Diabetologia. 2009;52(1):31–34. doi: 10.1007/s00125-008-1209-3
15. Davis SN, Shavers C, Mosqueda-Garcia R, Costa F. Effects of differingantecedent hypoglycemia on subsequent counterregulation in normal humans. Diabetes. 1997;46(8):1328–1335. doi: 10.2337/diab.46.8.1328
16. Mudenha ET, Aarella VG, Chandrasekaram S, Fernando DJ. Rising HbA1c in the presence of optimal glycaemic control as assessed by self-monitoring – iron deficiency anaemia. JRSM Open. 2016;7(2):2054270415619321. doi: 10.1177/2054270415619321
17. Аметов А.С., Черникова Н.А., Демидова Т.Ю., Нажмутдинова П.К. Вариабельность гликемии как терапевтическая мишень в лечении пациентов с сахарным диабетом 2 типа // Фарматека. – 2016. – №5. – С. 8-13. [Ametov AS, Chernikova NA, Demidova TYu, Nazhmutdinova PK. Glycemic variability as a therapeutic target in the treatment of patients with type 2 diabetes mellitus. Pharmateca. 2016;(5):8-13. (In Russ.)]
18. Katz LB, Dirani RG, Li G, et al. Automated Glycemic Pattern Analysis Can Improve Health Care Professional Efficiency and Accuracy. J Diabetes Sci Technol. 2013;7(1):163-166. doi: 10,1177/193229681300700120
19. FDA. 510(k) Substantial equivalence determination decision summary assay and instrument combination template. Available from: https://www.accessdata.fda.gov/cdrh_docs/reviews/K110637.pdf. Accessed Dec 09, 2016.
20. McEnroe RJ, Burritt MF, Powers DM, et al. Interference Testing in Clinical Chemistry, Approved Guideline, 2nd Edition. Pennsylvania: Clinical and Laboratory Standards Institute; 2005.
21. Grady M, Campbell D, MacLeod K, Srinivasan A. Evaluation of a Blood Glucose Monitoring System with Automatic High- and Low-Pattern Recognition Software in Insulin-Using Patients: Pattern Detection and Patient-Reported Insights. J Diabetes Sci Technol. 2013;7(4):970-978. doi: 10,1177/193229681300700419
22. Lee-Davey J, Alexander S, Raja P. Clinical patterns of low blood glucose identified by a pattern algorithm may predict increased risk of severe hypoglycemia in the following 24-hour period. In: Proceedings of 4th International Conference on Advanced Technologies & Treatments for Diabetes. UK, London, 2011.
Supplementary files
|
1. Fig. 1. An agreed Parks error grid (mmol / L), where X is the comparison method; Y - glucometer [11]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(183KB)
|
Indexing metadata ▾ |
|
2. Fig. 2. A. Evaluation time (trends and 30-day average blood glucose value) using a self-monitoring diary in comparison with a glucometer. B. The error rate (trends and 30-day average) using a diary versus a blood glucose meter. The data represent the mean ± standard error of the mean of 64 values [18]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(72KB)
|
Indexing metadata ▾ |
Review
For citations:
Petunina N.A., Goncharova E.V., Terekhova A.L. Management of diabetes mellitus. The new period of self-control: detection of glucose trends and patterns. Diabetes mellitus. 2017;20(6):441-448. (In Russ.) https://doi.org/10.14341/DM8254

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).