New insights on microRNAs in diabetic nephropathy: potential biomarkers for diagnosis and therapeutic targets
https://doi.org/10.14341/DM8237
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes mellitus associated with the progressive deterioration of renal function. Although microalbuminuria is considered as a gold standard for DN diagnosis, it has limited predictive powers and specificity as a diagnostic tool for the early stage of DN. Therefore, new biomarkers are required for the early detection of DN. Studies using in vitro and in vivo models of DN have revealed an important role of microRNAs (miRNAs), short non-coding RNAs that modulate physiological and pathological processes by inhibiting target gene expression, in DN development. Recent studies have shown that the dysregulation of miRNAs, which is associated with the key features of DN, such as the mesangial expansion and accumulation of extracellular matrix proteins, is related to fibrosis and glomerular dysfunction. Thus, the up- and downregulation of miRNA expression in the renal tissue or biological fluids, including urine, may represent new biomarkers for the diagnosis and monitoring of DN progression. In this review, we highlight the significance of miRNAs as biomarkers for the early detection of DN and emphasise their potential role as a therapeutic target.
About the Authors
Elena Sergeevna KamyshovaI.M.Sechenov First Moscow State Medical University
Russian Federation
MD, PhD, senior research associate
Competing Interests:
No conflict of interests
Irina Nikolaevna Bobkova
I.M.Sechenov First Moscow State Medical University
Russian Federation
MD, PhD
Competing Interests:
No conflict of interests
Irina Mikhailovna Kutyrina
I.M.Sechenov First Moscow State Medical University
Russian Federation
MD, PhD, Professor
Competing Interests:
No conflict of interests
References
1. Шестакова М.В., Шамхалова М.Ш., Ярек-Мартынова И.Я., и др. Сахарный диабет и хроническая болезнь почек: достижения, нерешенные проблемы и перспективы лечения // Сахарный диабет. – 2011. – Т. 14. – №1. – C. 81-88. [Shestakova MV, Shamkhalova MS, Yarek-Martynova IY, Klefortova II, Sukhareva OY, Vikulova OK, et al. Diabetes mellitus and chronic kidney disease: achievements, unresolved problems, and prospects for therapy. Diabetes mellitus. 2011;14(1):81-88. (In Russ).] doi: 10.14341/2072-0351-6254
2. Caramori ML, Fioretto P, Mauer M. The need for early predictors of diabetic nephropathy risk: is albumin excretion rate sufficient? Diabetes. 2000;49(9):1399-1408. doi: 10.2337/diabetes.49.9.1399
3. Okamura K, Hagen JW, Duan H, et al. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell. 2007;130(1):89-100. doi: 10.1016/j.cell.2007.06.028
4. Баулина Н.М., Кулакова О.Г., Фаворова О.О. МикроРНК: роль в развитии аутоиммунного воспаления. // ActaNature (русскоязычная версия). – 2016. – Т. 8. – №1. – С. 21-33. [Baulina NM, Kulakova OG, Favorova OO. MicroRNAs: The Role in Autoimmune Inflammation. Acta Nature. 2016;8(1):21-33 (In Russ)]
5. Zhuo Y, Gao G, Shi JA, et al. miRNAs: biogenesis, origin and evolution, functions on virus-host interaction. Cell Physiol Biochem. 2013;32(3):499-510. doi: 10.1159/000354455
6. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509-524. doi: 10.1038/nrm3838
7. Dalmay T. Mechanism of miRNA-mediated repression of mRNA translation. Essays Biochem. 2013;54:29-38. doi: 10.1042/bse0540029
8. Vasudevan S. Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Rev RNA. 2012;3(3):311-330. doi: 10.1002/wrna.121
9. Friedlander MR, Lizano E, Houben AJ, et al. Evidence for the biogenesis of more than 1,000 novel human microRNAs. Genome Biol. 2014;15(4):R57. doi: 10.1186/gb-2014-15-4-r57
10. Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733-1741. doi: 10.1373/clinchem.2010.147405
11. Weickmann JL, Glitz DG. Human ribonucleases. Quantitation of pancreatic-like enzymes in serum, urine, and organ preparations. Journal Of Biological Chemistry. 1982;257:8705-8710.
12. Beltrami C, Clayton A, Phillips AO, et al. Analysis of urinary microRNAs in chronic kidney disease. Biochem Soc Trans. 2012;40(4):875-879. doi: 10.1042/BST20120090
13. Shi S, Yu L, Chiu C, et al. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol. 2008;19(11):2159-2169. doi: 10.1681/ASN.2008030312
14. Harvey SJ, Jarad G, Cunningham J, et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J Am Soc Nephrol. 2008;19(11):2150-2158. doi: 10.1681/ASN.2008020233
15. Ho J, Ng KH, Rosen S, et al. Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J Am Soc Nephrol. 2008;19(11):2069-2075. doi: 10.1681/ASN.2008020162
16. Patel V, Hajarnis S, Williams D, et al. MicroRNAs regulate renal tubule maturation through modulation of Pkd1. J Am Soc Nephrol. 2012;23(12):1941-1948. doi: 10.1681/ASN.2012030321
17. Sequeira-Lopez ML, Weatherford ET, Borges GR, et al. The microRNA-processing enzyme dicer maintains juxtaglomerular cells. J Am Soc Nephrol. 2010;21(3):460-467. doi: 10.1681/ASN.2009090964
18. Sun Y, Koo S, White N, et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res. 2004;32(22):e188. doi: 10.1093/nar/gnh186
19. Tian Z, Greene AS, Pietrusz JL, et al. MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res. 2008;18(3):404-411. doi: 10.1101/gr.6587008
20. Kanwar YS, Sun L, Xie P, et al. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol. 2011;6:395-423. doi: 10.1146/annurev.pathol.4.110807.092150
21. Qian Y, Feldman E, Pennathur S, et al. From fibrosis to sclerosis: mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes. 2008;57(6):1439-1445. doi: 10.2337/db08-0061
22. Schrijvers BF, De Vriese AS, Flyvbjerg A. From hyperglycemia to diabetic kidney disease: the role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines. Endocr Rev. 2004;25(6):971-1010. doi: 10.1210/er.2003-0018
23. Chen S, Jim B, Ziyadeh FN. Diabetic nephropathy and transforming growth factor-β: transforming our view of glomerulosclerosis and fibrosis build-up. Seminars in Nephrology. 2003;23(6):532-543. doi: 10.1053/s0270-9295(03)00132-3
24. Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol. 2010;21(2):212-222. doi: 10.1681/ASN.2008121226
25. Li Y, Kang YS, Dai C, et al. Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria. Am J Pathol. 2008;172(2):299-308. doi: 10.2353/ajpath.2008.070057
26. Hayashida T, Poncelet AC, Hubchak SC, Schnaper HW. TGF-beta1 activates MAP kinase in human mesangial cells: a possible role in collagen expression. Kidney Int. 1999;56(5):1710-1720. doi: 10.1046/j.1523-1755.1999.00733.x
27. Kato M, Yuan H, Xu ZG, et al. Role of the Akt/FoxO3a pathway in TGF-beta1-mediated mesangial cell dysfunction: a novel mechanism related to diabetic kidney disease. J Am Soc Nephrol. 2006;17(12):3325-3335. doi: 10.1681/ASN.2006070754
28. Kato M, Natarajan R. MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets. Ann N Y Acad Sci. 2015;1353:72-88. doi: 10.1111/nyas.12758
29. Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A. 2007;104(9):3432-3437. doi: 10.1073/pnas.0611192104
30. Kato M, Arce L, Wang M, et al. A microRNA circuit mediates transforming growth factor-beta1 autoregulation in renal glomerular mesangial cells. Kidney Int. 2011;80(4):358-368. doi: 10.1038/ki.2011.43
31. Kato M, Putta S, Wang M, et al. TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol. 2009;11(7):881-889. doi: 10.1038/ncb1897
32. Wang Q, Wang Y, Minto AW, et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J. 2008;22(12):4126-4135. doi: 10.1096/fj.08-112326
33. He F, Peng F, Xia X, et al. MiR-135a promotes renal fibrosis in diabetic nephropathy by regulating TRPC1. Diabetologia. 2014;57(8):1726-1736. doi: 10.1007/s00125-014-3282-0
34. Wang B, Komers R, Carew R, et al. Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis. J Am Soc Nephrol. 2012;23(2):252-265. doi: 10.1681/ASN.2011010055
35. Chen HY, Zhong X, Huang XR, et al. MicroRNA-29b inhibits diabetic nephropathy in db/db mice. Mol Ther. 2014;22(4):842-853. doi: 10.1038/mt.2013.235
36. Lin CL, Lee PH, Hsu YC, et al. MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction. J Am Soc Nephrol. 2014;25(8):1698-1709. doi: 10.1681/ASN.2013050527
37. Kanasaki K, Shi S, Kanasaki M, et al. Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes. 2014;63(6):2120-2131. doi: 10.2337/db13-1029
38. Dey N, Das F, Mariappan MM, et al. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. J Biol Chem. 2011;286(29):25586-25603. doi: 10.1074/jbc.M110.208066
39. Zhong X, Chung AC, Chen HY, et al. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia. 2013;56(3):663-674. doi: 10.1007/s00125-012-2804-x
40. Wang J, Gao Y, Ma M, et al. Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice. Cell Biochem Biophys. 2013;67(2):537-546. doi: 10.1007/s12013-013-9539-2
41. Chau BN, Xin C, Hartner J, et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med. 2012;4(121):121ra118. doi: 10.1126/scitranslmed.3003205
42. Wang X, Shen E, Wang Y, et al. Cross talk between miR-214 and PTEN attenuates glomerular hypertrophy under diabetic conditions. Sci Rep. 2016;6:31506. doi: 10.1038/srep31506
43. Zhang Z, Luo X, Ding S, et al. MicroRNA-451 regulates p38 MAPK signaling by targeting of Ywhaz and suppresses the mesangial hypertrophy in early diabetic nephropathy. FEBS Lett. 2012;586(1):20-26. doi: 10.1016/j.febslet.2011.07.042
44. Long J, Wang Y, Wang W, et al. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. J Biol Chem. 2010;285(30):23457-23465. doi: 10.1074/jbc.M110.136168
45. Tufro A, Veron D. VEGF and podocytes in diabetic nephropathy. Semin Nephrol. 2012;32(4):385-393. doi: 10.1016/j.semnephrol.2012.06.010
46. Fu Y, Zhang Y, Wang Z, et al. Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy. Am J Nephrol. 2010;32(6):581-589. doi: 10.1159/000322105
47. Feng B, Chen S, McArthur K, et al. miR-146a-Mediated extracellular matrix protein production in chronic diabetes complications. Diabetes. 2011;60(11):2975-2984. doi: 10.2337/db11-0478
48. Muratsu-Ikeda S, Nangaku M, Ikeda Y, et al. Downregulation of miR-205 modulates cell susceptibility to oxidative and endoplasmic reticulum stresses in renal tubular cells. PLoS One. 2012;7(7):e41462. doi: 10.1371/journal.pone.0041462
49. Wei J, Zhang Y, Luo Y, et al. Aldose reductase regulates miR-200a-3p/141-3p to coordinate Keap1-Nrf2, Tgfbeta1/2, and Zeb1/2 signaling in renal mesangial cells and the renal cortex of diabetic mice. Free Radic Biol Med. 2014;67:91-102. doi: 10.1016/j.freeradbiomed.2013.10.811
50. Cheng L, Sun X, Scicluna BJ, et al. Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine. Kidney Int. 2014;86(2):433-444. doi: 10.1038/ki.2013.502
51. Mall C, Rocke DM, Durbin-Johnson B, Weiss RH. Stability of miRNA in human urine supports its biomarker potential. Biomark Med. 2013;7(4):623-631. doi: 10.2217/bmm.13.44
52. Barutta F, Tricarico M, Corbelli A, et al. Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS One. 2013;8(11):e73798. doi: 10.1371/journal.pone.0073798
53. Argyropoulos C, Wang K, McClarty S, et al. Urinary microRNA profiling in the nephropathy of type 1 diabetes. PLoS One. 2013;8(1):e54662. doi: 10.1371/journal.pone.0054662
54. Papadopoulos T, Belliere J, Bascands JL, et al. miRNAs in urine: a mirror image of kidney disease? Expert Rev Mol Diagn. 2015;15(3):361-374. doi: 10.1586/14737159.2015.1009449
55. Delic D, Eisele C, Schmid R, et al. Urinary Exosomal miRNA Signature in Type II Diabetic Nephropathy Patients. PLoS One. 2016;11(3):e0150154. doi: 10.1371/journal.pone.0150154
56. Eissa S, Matboli M, Bekhet MM. Clinical verification of a novel urinary microRNA panal: 133b, -342 and -30 as biomarkers for diabetic nephropathy identified by bioinformatics analysis. Biomed Pharmacother. 2016;83:92-99. doi: 10.1016/j.biopha.2016.06.018
57. Liu Y, Gao G, Yang C, et al. Stability of miR-126 in Urine and Its Potential as a Biomarker for Renal Endothelial Injury with Diabetic Nephropathy. Int J Endocrinol. 2014;2014:393109. doi: 10.1155/2014/393109
58. DiStefano JK, Taila M, Alvarez ML. Emerging roles for miRNAs in the development, diagnosis, and treatment of diabetic nephropathy. Curr Diab Rep. 2013;13(4):582-591. doi: 10.1007/s11892-013-0386-8
59. Schena FP, Serino G, Sallustio F. MicroRNAs in kidney diseases: new promising biomarkers for diagnosis and monitoring. Nephrol Dial Transplant. 2014;29(4):755-763. doi: 10.1093/ndt/gft223
60. Long J, Wang Y, Wang W, et al. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J Biol Chem. 2011;286(13):11837-11848. doi: 10.1074/jbc.M110.194969
Supplementary files
|
1. Рис. 1. Биогенез микроРНК (адаптировано из [3, 4]). | |
Subject | ||
Type | Исследовательские инструменты | |
View
(71KB)
|
Indexing metadata ▾ |
Review
For citations:
Kamyshova E.S., Bobkova I.N., Kutyrina I.M. New insights on microRNAs in diabetic nephropathy: potential biomarkers for diagnosis and therapeutic targets. Diabetes mellitus. 2017;20(1):42-50. (In Russ.) https://doi.org/10.14341/DM8237

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).