Predictors and diagnosis of cardiac autonomic nervous dysfunction in patients with type 1 and type 2 diabetes mellitus
Abstract
Diabetic cardiovascular autonomic neuropathy (DCAN) is a diabetic complication characterised by early dissemination of sympathetic and parasympathetic, small-fibre neuronal degeneration. DCAN is the most dangerous and insidious complication that influences the clinical course and mortality rate of diabetes; however, it is often underestimated and not recognised by practitioners. Medical history and a physical examination are not sufficient for diagnosing DCAN. Laboratory diagnosis and the instrumental methods used to evaluate DCAN are time-consuming and not always available. Early detection of DCAN in diabetic patients is important for the early implementation of therapy. Today, there is no uniform diagnostic algorithm for DCAN in patients with various disorders of carbohydrate metabolism. This is due to the insufficient number of clinical trials and limitations of current protocols.
This review presents an overview of the clinical and experimental studies of DCAN. The epidemiology, clinical manifestations, risk factors and underlying pathogenesis of DCAN are considered. The advantages and disadvantages of conventional and new diagnostic methods are discussed.
About the Authors
Kirill A. PopovEndocrinology Research Centre
Russian Federation
clinical resident
Alla Y. Tokmakova
Endocrinology Research Centre
Russian Federation
MD, PhD, chief research associate
Irina Z. Bondarenko
Endocrinology Research Centre
Russian Federation
MD, PhD, chief research associate
References
1. Ланг Г.Ф. Вопросы кардиологии. – Л.: ОГИЗ; 1936. [Lang G.F. Voprosy kardiologii. Lenindrad: OGIZ; 1936. (in Russ.)]
2. Schonauer M, Thomas A, Morbach S, et al. Cardiac autonomic diabetic neuropathy. Diab Vasc Dis Res. 2008;5(4):336-344. doi: 10.3132/dvdr.2008.047
3. Low PA, Benrud-Larson LM, Sletten DM, et al. Autonomic Symptoms and Diabetic Neuropathy: A population-based study. Diabetes Care. 2004;27(12):2942-2947. doi: 10.2337/diacare.27.12.2942
4. Pop-Busui R, Low PA, Waberski BH, et al. Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus: the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC). Circulation. 2009;119(22):2886-2893. doi: 10.1161/CIRCULATIONAHA.108.837369
5. Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic Autonomic Neuropathy. Diabetes Care. 2003;26(5):1553-1579. doi: 10.2337/diacare.26.5.1553
6. DCCT Research Group. The effect of intensive diabetes therapy on measures of autonomic nervous system function in the Diabetes Control and Complications Trial (DCCT). Diabetologia. 1998;41(4):416-423. doi: 10.1007/s001250050924
7. Kennedy WR, Navarro X, Sutherland DER. Neuropathy profile of diabetic patients in a pancreas transplantation program. Neurology. 1995;45(4):773-780. doi: 10.1212/wnl.45.4.773
8. Ziegler D, Gries F, Mühlen H, et al. Prevalence and clinical correlates of cardiovascular autonomic and peripheral diabetic neuropathy in patients attending diabetes centers. The Diacan Multicenter Study Group. Diabete & metabolisme. 1992;19(1 Pt 2):143-151
9. Konduracka E, Cieslik G, Galicka-Latala D, et al. Myocardial dysfunction and chronic heart failure in patients with long-lasting type 1 diabetes: a 7-year prospective cohort study. Acta Diabetol. 2013;50(4):597-606. doi: 10.1007/s00592-013-0455-0
10. Ткачёва О.Н., Вёрткин А.Л. Диабетическая автономная нейропатия (руководство для врачей). Москва: ГЭОТАР – Медиа, 2009. [Tkacheva ON, Vertkin AL. Diabeticheskaya avtonomnaya neyropatiya (rukovodstvo dlya vrachey). Moscow: GEOTAR – Media; 2009. (in Russ.)]
11. Cameron NE, Eaton SEM, Cotter MA, Tesfaye S. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia. 2001;44(11):1973-1988. doi: 10.1007/s001250100001
12. Vinik AI, Erbas T, Casellini CM. Diabetic cardiac autonomic neuropathy, inflammation and cardiovascular disease. J Diabetes Investig. 2013;4(1):4-18. doi: 10.1111/jdi.12042
13. Debono M, Cachia E. The impact of Cardiovascular Autonomic Neuropathy in diabetes: is it associated with left ventricular dysfunction? Auton Neurosci. 2007;132(1):1-7.
14. Marwick TH. Diabetic heart disease. Heart. 2006;92(3):296-300. doi: 10.1136/hrt.2005.067231
15. Didangelos TP, Arsos GA, Karamitsos DT, et al. Left Ventricular Systolic and Diastolic Function in Normotensive Type 1 Diabetic Patients With or Without Autonomic Neuropathy: A radionuclide ventriculography study. Diabetes Care. 2003;26(7):1955-1960. doi: 10.2337/diacare.26.7.1955
16. Goldstein DS, Holmes C, Sharabi Y, et al. Plasma levels of catechols and metanephrines in neurogenic orthostatic hypotension. Neurology. 2003;60(8):1327-1332. doi: 10.1212/01.wnl.0000058766.46428.f3
17. Hilsted J. Catecholamines and diabetic autonomic neuropathy. Diabet Med. 1995;12(4):296-297.
18. Christensen NJ, Dejgaard A, Hilsted J. Plasma dihydroxyphenylglycol (DHPG) as an index of diabetic autonomic neuropathy. Clin Physiol. 1988;8(6):577-580.
19. Fanelli C, Pampanelli S, Lalli C. et al. Long-term intensive therapy of IDDM patients with clinically overt autonomic neuropathy: effects on hypoglycemia awareness and counterregulation. Diabetes. 1997;46(7):1172-1181.
20. Thornalley PJ. Clinical significance of glycation. Clin Lab. 1999;45:263–273.
21. Kilhovd BK, Giardino I, Torjesen PA, et al. Increased serum levels of the specific AGE-compound methylglyoxal-derived hydroimidazolone in patients with type 2 diabetes. Metabolism. 2003;52(2):163-167. doi: 10.1053/meta.2003.50035
22. Sugimoto K, Nishizawa Y, Horiuchi S, Yagihashi S. Localization in human diabetic peripheral nerve of N ε -carboxymethyllysine-protein adducts, an advanced glycation endproduct. Diabetologia. 1997;40(12):1380-1387. doi: 10.1007/s001250050839
23. Koito W, Araki T, Horiuchi S, Nagai R. Conventional antibody against Nepsilon-(carboxymethyl)lysine (CML) shows cross-reaction to Nepsilon-(carboxyethyl)lysine (CEL): immunochemical quantification of CML with a specific antibody. J Biochem. 2004;136(6):831-837. doi: 10.1093/jb/mvh193
24. Drusch S, Faist V, Erbersdobler HF. Determination of Nϵ-carboxymethyllysine in milk products by a modified reversed-phase HPLC method. Food Chemistry. 1999;65(4):547-553. doi: 10.1016/s0308-8146(98)00244-1
25. Thornalley PJ, Argirova M, Ahmed N, et al. Mass spectrometric monitoring of albumin in uremia. Kidney Int. 2000;58(5):2228-2234. doi: 10.1111/j.1523-1755.2000.00398.x
26. Ahmed N, Thornalley PJ, Luthen R, et al. Processing of protein glycation, oxidation and nitrosation adducts in the liver and the effect of cirrhosis. J Hepatol. 2004;41(6):913-919. doi: 10.1016/j.jhep.2004.08.007
27. Agalou S, Ahmed N, Babaei-Jadidi R, et al. Profound mishandling of protein glycation degradation products in uremia and dialysis. J Am Soc Nephrol. 2005;16(5):1471-1485. doi: 10.1681/ASN.2004080635
28. Miki Hayashi C, Nagai R, Miyazaki K, et al. Conversion of Amadori Products of the Maillard Reaction to Nε-(carboxymethyl)lysine by Short-Term Heating: Possible Detection of Artifacts by Immunohistochemistry. Lab Invest. 2002;82(6):795-808. doi: 10.1097/01.lab.0000018826.59648.07.
29. Thornalley PJ, Battah S, Ahmed N, et al. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J. 2003;375(Pt 3):581-592. doi: 10.1042/BJ20030763
30. Lieuw-A-Fa MLM, van Hinsbergh VWM, Teerlink T, et al. Increased levels of N -(carboxymethyl)lysine and N-(carboxyethyl)lysine in type 1 diabetic patients with impaired renal function: correlation with markers of endothelial dysfunction. Nephrol Dial Transplant. 2004;19(3):631-636. doi: 10.1093/ndt/gfg619
31. Meerwaldt R, Lutgers, HL, Links, TP, et al. Skin autofluorescence is a strong predictor of cardiac mortality in diabetes. Diabetes care. 2007;30(1):107-112. doi: 10.2337/dc06-1391
32. Spallone V, Bellavere F, Scionti L, et al. Recommendations for the use of cardiovascular tests in diagnosing diabetic autonomic neuropathy. Nutr Metab Cardiovasc Dis. 2011;21(1):69-78. doi: 10.1016/j.numecd.2010.07.005
33. Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115(3):387-397. doi: 10.1161/CIRCULATIONAHA.106.634949
34. Ewing DJ. Cardiovascular Reflexes and Autonomic Neuropathy. Clin. Sci. Mol. Med. 1978;55(4):321-327. doi: 10.1042/cs0550321
35. Levitt NS, Stansberry KB, Wynchank S, Vinik AI. The Natural Progression of Autonomic Neuropathy and Autonomic Function Tests in a Cohort of People With IDDM. Diabetes Care. 1996;19(7):751-754. doi: 10.2337/diacare.19.7.751
36. Шайдуллина М.Р., Валеева Ф.В., Якупов Э.З. Факторы риска развития диабетической автономной кардиоваскулярной нейропатии у детей и подростков, страдающих сахарным диабетом 1 типа // Сахарный диабет. – 2013. – Т. 16. – № 3. – C. 84-89. [Shaidullina MR, Valeeva FV, Yakupov EZ. Risk factors for diabetic autonomic cardiovascular neuropathy in children and adolescents with type 1 diabetes mellitus. Diabetes mellitus. 2013;16(3):84-89. (in Russ.)] doi: 10.14341/2072-0351-821
37. Кузнецова И.Г., Настаушева Т.Л., Денисенко В.Р., и др. Диастолическая функция миокарда и автономная кардиальная нейропатия у детей при сахарном диабете типа 1 // Сахарный диабет. – 2002. – Т. 5. – № 2. – C. 10-13. [Kuznetsova IG, Nastausheva TL, Denisenko VP, et al. Diastolicheskaya funktsiya miokarda i avtonomnaya kardial'naya neyropatiya u detey pri sakharnom diabete tipa 1. Diabetes mellitus. 2002;5(2):10-13. (in Russ.)] doi: 10.14341/2072-0351-5470
38. Стронгин Л.Г., Ботова С.Н., Починка И.Г. Проблемы диагностики кардиоваскулярной автономной нейропатии у больных сахарным диабетом 2 типа, страдающих хронической сердечной недостаточностью // Практическая медицина. – 2008. – Т. 6. – № 3 – С. 15-18. [Strongin LG, Botova SN, Pochinka IG. Problemy diagnostiki kardiovaskuljarnoj avtonomnoj nejropatii u bol'nyh saharnym diabetom 2 tipa, stradajushhih hronicheskoj serdechnoj nedostatochnost'ju. Prakticheskaja medicina. 2008;6(3):15-18. (in Russ.)]
39. Бушуева А.В., Ботова С.Н., Починка И.Г., и др. Диагностика кардиоваскулярной автономной нейропатии у больных сахарным диабетом 2-го типа с подострой стадией инфаркта миокарда с подъемом сегмента ST. // Современные технологии в медицине. – 2016. – Т. 8. – №2. – С. 53-58. [Bushueva AV, Botova SN, Pochinka IG, et al. Diagnostika kardiovaskulyarnoy avtonomnoy neyropatii u bol'nykh sakharnym diabetom 2-go tipa s podostroy stadiey infarkta miokarda s pod"emom segmenta ST. Sovremennye tekhnologii v meditsine. 2016;8(2):53-58. (in Russ.)]
40. Bernardi L, Spallone V, Stevens M, et al. Methods of investigation for cardiac autonomic dysfunction in human research studies. Diabetes Metab Res Rev. 2011;27(7):654-664. doi: 10.1002/dmrr.1224
41. Grassi G, Cattaneo BM, Seravalle G, et al. Baroreflex Control of Sympathetic Nerve Activity in Essential and Secondary Hypertension. Hypertension. 1998;31(1):68-72. doi: 10.1161/01.hyp.31.1.68
42. Rovere MTL, Bigger JT, Marcus FI, et al. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. The Lancet. 1998;351(9101):478-484. doi: 10.1016/s0140-6736(97)11144-8
43. La Rovere MT, Pinna GD, Maestri R, et al. Prognostic implications of baroreflex sensitivity in heart failure patients in the beta-blocking era. J Am Coll Cardiol. 2009;53(2):193-199. doi: 10.1016/j.jacc.2008.09.034
44. Johansson M, Gao SA, Friberg P, et al. Baroreflex effectiveness index and baroreflex sensitivity predict all-cause mortality and sudden death in hypertensive patients with chronic renal failure. J Hypertens. 2007;25(1):163-168. doi: 10.1097/01.hjh.0000254377.18983.eb
45. Gerritsen J, Dekker JM, TenVoorde BJ, et al. Impaired Autonomic Function Is Associated With Increased Mortality, Especially in Subjects With Diabetes, Hypertension, or a History of Cardiovascular Disease: The Hoorn Study. Diabetes Care. 2001;24(10):1793-1798. doi: 10.2337/diacare.24.10.1793
46. Rosengard-Barlund M, Bernardi L, Fagerudd J, et al. Early autonomic dysfunction in type 1 diabetes: a reversible disorder? Diabetologia. 2009;52(6):1164-1172. doi: 10.1007/s00125-009-1340-9
47. Alvarez GE, Davy BM, Ballard TP, et al. Weight loss increases cardiovagal baroreflex function in obese young and older men. Am J Physiol. 2005;289(4):E665-E669. doi: 10.1152/ajpendo.00487.2004
48. Loimaala A, Huikuri HV, Koobi T, et al. Exercise Training Improves Baroreflex Sensitivity in Type 2 Diabetes. Diabetes. 2003;52(7):1837-1842. doi: 10.2337/diabetes.52.7.1837
49. Huggett RJ, Scott EM, Gilbey SG, et al. Disparity of autonomic control in type 2 diabetes mellitus. Diabetologia. 2005;48(1):172-179. doi: 10.1007/s00125-004-1601-6
50. Hoffman RP, Sinkey CA, Anderson EA. Microneurographically determined muscle sympathetic nerve activity levels are reproducible in insulin-dependent diabetes mellitus. Journal of diabetes and its complications. 1998;12(6):307-310. doi: 10.1016/S1056-8727(98)00010-5
51. Voulgari C, Papadogiannis D, Tentolouris N. Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies. Vasc Health Risk Manag. 2010;6:883-903. doi: 10.2147/VHRM.S11681.
52. Dumesnil J. G. Gaudreault, G., Honos, G. N., et al. Use of Valsalva maneuver to unmask left ventricular diastolic function abnormalities by Doppler echocardiography in patients with coronary artery disease or systemic hypertension. Am J Cardiol. 1991;68(5):515–519.
53. Бондарь И.А., Демин А.А., Шабельникова О.Ю. Состояние сердца и сосудов при кардиоваскулярной форме автономной нейропатии у больных сахарным диабетом 2 типа // Сахарный диабет. – 2014. – Т. 17. – № 2. – C. 41-46. [Bondar' IA, Demin AA, Shabel'nikova OY. Morphological and functional parameters of the heart and vessels in patients with type 2 diabetes mellitus and cardiovascular autonomic neuropathy. Diabetes mellitus. 2014;17(2):41-46. (in Russ.)] doi: 10.14341/DM2014241-46
54. Lanza GA, Crea F. Primary coronary microvascular dysfunction: clinical presentation, pathophysiology, and management. Circulation. 2010;121(21):2317-2325. doi: 10.1161/CIRCULATIONAHA.109.900191
55. Pop-Busui R, Cleary PA, Braffett BH, et al. Association between cardiovascular autonomic neuropathy and left ventricular dysfunction: DCCT/EDIC study (Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications). J Am Coll Cardiol. 2013;61(4):447-454. doi: 10.1016/j.jacc.2012.10.028
56. Attili AK, Schuster A, Nagel E, et al. Quantification in cardiac MRI: advances in image acquisition and processing. Int J Cardiovasc Imaging. 2010;26 Suppl 1:27-40. doi: 10.1007/s10554-009-9571-x
57. Taskiran M, Fritz-Hansen T, Rasmussen V, et al. Decreased Myocardial Perfusion Reserve in Diabetic Autonomic Neuropathy. Diabetes. 2002;51(11):3306-3310. doi: 10.2337/diabetes.51.11.3306
58. Shivu GN, Phan TT, Abozguia K, et al. Relationship between coronary microvascular dysfunction and cardiac energetics impairment in type 1 diabetes mellitus. Circulation. 2010;121(10):1209-1215. doi: 10.1161/CIRCULATIONAHA.109.873273
59. Piya MK, Shivu GN, Tahrani A, et al. Abnormal left ventricular torsion and cardiac autonomic dysfunction in subjects with type 1 diabetes mellitus. Metabolism. 2011;60(8):1115-1121. doi: 10.1016/j.metabol.2010.12.004
60. Young AA, Cowan BR. Evaluation of left ventricular torsion by cardiovascular magnetic resonance. Journal of Cardiovascular magnetic resonance. 2012;14(1):49.
61. Caudron J, Fares J, Bauer F, Dacher JN. Evaluation of left ventricular diastolic function with cardiac MR imaging. Radiographics. 2011;31(1):239-259. doi: 10.1148/rg.311105049
62. Kowallick JT, Edelmann F, Lotz J, et al. Imaging diastolic dysfunction with cardiovascular magnetic resonance. Journal of CardiolTher. 2014;1(4):58-64.
63. Ambale-Venkatesh B, Armstrong AC, Liu CY, et al. Diastolic function assessed from tagged MRI predicts heart failure and atrial fibrillation over an 8-year follow-up period: the multi-ethnic study of atherosclerosis. Eur Heart J Cardiovasc Imaging. 2014;15(4):442-449. doi: 10.1093/ehjci/jet189
64. Raffel DM, Wieland DM. Assessment of cardiac sympathetic nerve integrity with positron emission tomography. Nucl. Med. Biol.. 2001;28(5):541-559.
65. DeGrado TR. Hutchins GD, Toorongian SA, et al. Myocardial kinetics of carbon-11-meta-hydroxyephedrine: retention mechanisms and effects of norepinephrine. J Nucl Med. 1993;34(8):1287–1293.
66. Mäntysaari M, Kuikka J, Mustonen J, et al. Measurement of myocardial accumulation of 123I-metaiodobenzylguanidine for studying cardiac autonomic neuropathy in diabetes mellitus. ClinAutonom Res. 1996;6(3):163-169. doi: 10.1007/bf02281904.
67. Sugiyama T, Kurata C, Tawarahara K, Nakano T. Is abnormal iodine-123-MIBG kinetics associated with left ventricular dysfunction in patients with diabetes mellitus? J Nucl Cardiol. 2000;7(6):562-568. doi: 10.1067/mnc.2000.108606
Review
For citations:
Popov K.A., Tokmakova A.Y., Bondarenko I.Z. Predictors and diagnosis of cardiac autonomic nervous dysfunction in patients with type 1 and type 2 diabetes mellitus. Diabetes mellitus. 2017;20(3):185-193. (In Russ.) https://doi.org/10.14341/8156

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).