Empagliflozin: a new strategy for nephroprotection in diabetes
https://doi.org/10.14341/DM8005
Abstract
Empagliflozin, an inhibitor of sodium–glucose symporter type 2 (SGLT2), is a new class of antidiabetic agents with numerous pleiotropic effects. The review summarises data on the influence of empagliflozin on the structural and functional changes in the kidneys of the models of diabetes mellitus (DM) and of patients with DM. A literature search was conducted using the databases of Medline/PubMed, Scopus, Web of Science, ClinicalTrials.gov and eLibrary. The experimental results showed a decrease in the blood glucose level, blood pressure, glomerular hyperfiltration and overexpression of proinflammatory and fibrogenic factors in the kidneys under the influence of empagliflozin. Most clinical studies have demonstrated the albuminuria-lowering effect of empagliflozin in patients with type 2 DM. The EMPA-REG OUTCOME study has demonstrated slowing of the chronic kidney disease progression, decrease in the incidence of end-stage renal failure and death from renal causes in patients with type 2 DM undergoing the empagliflozin treatment compared with those receiving placebo. The mechanisms of the nephroprotective effect of empagliflozin included systemic and renal effects. The decrease in hyperglycaemia, blood pressure and body weight; reduction in glomerular hyperfiltration; enhancement of sodium excretion and suppression of inflammatory and fibrogenic signalling pathways in the kidneys may help slow the development of diabetic kidney damage under the influence of empagliflozin. The possibility of extrapolating the confirmed properties of empagliflozin to other SGLT2 inhibitors needs further investigation.
About the Authors
Anton Ivanovich KorbutScientific Institute of Clinical and Experimental Lymphology
Russian Federation
MD, junior research associate laboratory of Endocrinology
Competing Interests:
No conflict of interest.
Vadim Valer'evich Klimontov
Scientific Institute of Clinical and Experimental Lymphology
Russian Federation
MD, PhD, Professor, Head of the Laboratory of Endocrinology, Deputy Director for Science
Competing Interests:
Received speaker honoraria from Boehringer Ingelheim.
References
1. Farber SJ, Berger EY, Earle DP. Effect of diabetes and insulin of the maximum capacity of the renal tubules to reabsorb glucose. J Clin Invest. 1951;30(2):125-129. doi: 10.1172/JCI102424
2. Mogensen CE. Maximum tubular reabsorption capacity for glucose and renal hemodynamcis during rapid hypertonic glucose infusion in normal and diabetic subjects. Scand J Clin Lab Invest. 1971;28(1):101-109. doi: 10.3109/00365517109090668
3. Kanai Y, Lee WS, You G, et al. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J Clin Invest. 1994;93(1):397-404. doi: 10.1172/JCI116972
4. Wright EM, Hirayama BA, Loo DF. Active sugar transport in health and disease. J Intern Med. 2007;261(1):32-43. doi: 10.1111/j.1365-2796.2006.01746.x
5. Hummel CS, Lu C, Loo DD, et al. Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2. Am J Physiol Cell Physiol. 2011;300(1):C14-21. doi: 10.1152/ajpcell.00388.2010
6. Wright EM. Renal Na<sup>+</sup>-glucose cotransporters. Am J Physiol Renal Physiol. 2001;280(1):F10-F18.
7. Santer R. Molecular Analysis of the SGLT2 Gene in Patients with Renal Glucosuria. J Am Soc Nephrol. 2003;14(11):2873-2882. doi: 10.1097/01.asn.0000092790.89332.d2
8. Pontoglio M, Prie D, Cheret C, et al. HNF1alpha controls renal glucose reabsorption in mouse and man. EMBO Rep. 2000;1(4):359-365. doi: 10.1093/embo-reports/kvd071
9. Freitas HS, Anhe GF, Melo KF, et al. Na(+) -glucose transporter-2 messenger ribonucleic acid expression in kidney of diabetic rats correlates with glycemic levels: involvement of hepatocyte nuclear factor-1alpha expression and activity. Endocrinology. 2008;149(2):717-724. doi: 10.1210/en.2007-1088
10. Rahmoune H, Thompson PW, Ward JM, et al. Glucose Transporters in Human Renal Proximal Tubular Cells Isolated From the Urine of Patients With Non-Insulin-Dependent Diabetes. Diabetes. 2005;54(12):3427-3434. doi: 10.2337/diabetes.54.12.3427
11. Vallon V, Rose M, Gerasimova M, et al. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol Renal Physiol. 2013;304(2):F156-167. doi: 10.1152/ajprenal.00409.2012
12. Tabatabai NM, Sharma M, Blumenthal SS, Petering DH. Enhanced expressions of sodium-glucose cotransporters in the kidneys of diabetic Zucker rats. Diabetes Res Clin Pract. 2009;83(1):e27-30. doi: 10.1016/j.diabres.2008.11.003
13. Gembardt F, Bartaun C, Jarzebska N, et al. The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension. Am J Physiol Renal Physiol. 2014;307(3):F317-325. doi: 10.1152/ajprenal.00145.2014
14. Albertoni Borghese MF, Majowicz MP, Ortiz MC, et al. Expression and activity of SGLT2 in diabetes induced by streptozotocin: relationship with the lipid environment. Nephron Physiol. 2009;112(3):p45-52. doi: 10.1159/000214214
15. Osorio H, Bautista R, Rios A, et al. Effect of phlorizin on SGLT2 expression in the kidney of diabetic rats. J Nephrol. 2010;23(5):541-546.
16. Tojo A, Hatakeyama S, Kinugasa S, Nangaku M. Angiotensin receptor blocker telmisartan suppresses renal gluconeogenesis during starvation. Diabetes Metab Syndr Obes. 2015;8:103-113. doi: 10.2147/DMSO.S78771
17. Ojima A, Matsui T, Nishino Y, et al. Empagliflozin, an Inhibitor of Sodium-Glucose Cotransporter 2 Exerts Anti-Inflammatory and Antifibrotic Effects on Experimental Diabetic Nephropathy Partly by Suppressing AGEs-Receptor Axis. Horm Metab Res. 2015;47(9):686-692. doi: 10.1055/s-0034-1395609
18. Beloto-Silva O, Machado UF, Oliveira-Souza M. Glucose-induced regulation of NHEs activity and SGLTs expression involves the PKA signaling pathway. J Membr Biol. 2011;239(3):157-165. doi: 10.1007/s00232-010-9334-6
19. Nakamura N, Matsui T, Ishibashi Y, Yamagishi S. Insulin stimulates SGLT2-mediated tubular glucose absorption via oxidative stress generation. Diabetol Metab Syndr. 2015;7:48. doi: 10.1186/s13098-015-0044-1
20. Marumo T, Yagi S, Kawarazaki W, et al. Diabetes Induces Aberrant DNA Methylation in the Proximal Tubules of the Kidney. J Am Soc Nephrol. 2015;26(10):2388-2397. doi: 10.1681/ASN.2014070665
21. Panchapakesan U, Pegg K, Gross S, et al. Effects of SGLT2 inhibition in human kidney proximal tubular cells--renoprotection in diabetic nephropathy? PLoS One. 2013;8(2):e54442. doi: 10.1371/journal.pone.0054442
22. Дедов И.И., Шестакова М.В., Галстян Г.Р., и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Под редакцией И.И. Дедова, М.В. Шестаковой (7-й выпуск) // Сахарный диабет. – 2015. – Т. 18. – №1S – C. 1-112. [Dedov II, Shestakova MV, Galstyan GR, et al. Standards of specialized diabetes care. Edited by Dedov I.I., Shestakova M.V. (7th edition). Diabetes mellitus. 2015;18(1S):1-112. (in Russ)] doi: 10.14341/DM20151S1-112
23. Liu JJ, Lee T, DeFronzo RA. Why Do SGLT2 inhibitors inhibit only 30-50% of renal glucose reabsorption in humans? Diabetes. 2012;61(9):2199-2204. doi: 10.2337/db12-0052
24. Scheen AJ. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Pharmacokinet. 2014;53(3):213-225. doi: 10.1007/s40262-013-0126-x
25. Grempler R, Thomas L, Eckhardt M, et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab. 2012;14(1):83-90. doi: 10.1111/j.1463-1326.2011.01517.x
26. Xu J, Yuan H, Ran T, et al. A selectivity study of sodium-dependent glucose cotransporter 2/sodium-dependent glucose cotransporter 1 inhibitors by molecular modeling. J Mol Recognit. 2015;28(8):467-479. doi: 10.1002/jmr.2464
27. Al Jobori H, Daniele G, Martinez R, et al. Acute Glucosuric Response and Impact on Glycemic Indices of Empagliflozin in Nondiabetic and Diabetic Subjects [Poster 1875-P]; Poster presented at: ADA 76th Scientific Sessions 2016 June 10-14; New Orleans, LA, USA.
28. Macha S, Mattheus M, Halabi A, et al. Pharmacokinetics, pharmacodynamics and safety of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in subjects with renal impairment. Diabetes Obes Metab. 2014;16(3):215-222. doi: 10.1111/dom.12182
29. Инструкция по применению лекарственного препарата Джардинс: утв. Министерством здравоохранения Российской Федерации 28.11.2014 г. – М.; 2014. [Instruktsiya po primeneniyu lekarstvennogo preparata Jardianсe: approved by the Ministry of Healthcare of the Russian Federation 2014 Nov 28. – Moscow: 2014. (In Russ).]
30. Cherney D, Cooper M, Tikkanen I, et al. 4b.01: Contrasting Influences of Renal Function on Blood Pressure and Hba1c Reductions with Empagliflozin in Patients with Type 2 Diabetes and Hypertension. J Hypertens. 2015;33 Suppl 1:e53. doi: 10.1097/01.hjh.0000467485.28062.c1
31. Seman L, Macha S, Nehmiz G, et al. Empagliflozin (BI 10773), a Potent and Selective SGLT2 Inhibitor, Induces Dose-Dependent Glucosuria in Healthy Subjects. Clin Pharmacol Drug Dev. 2013;2(2):152-161. doi: 10.1002/cpdd.16
32. Kern M, Kloting N, Mark M, et al. The SGLT2 inhibitor empagliflozin improves insulin sensitivity in db/db mice both as monotherapy and in combination with linagliptin. Metabolism. 2016;65(2):114-123. doi: 10.1016/j.metabol.2015.10.010
33. Vallon V, Gerasimova M, Rose MA, et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Renal Physiol. 2014;306(2):F194-204. doi: 10.1152/ajprenal.00520.2013
34. Taub ME, Ludwig-Schwellinger E, Ishiguro N, et al. Sex-, Species-, and Tissue-Specific Metabolism of Empagliflozin in Male Mouse Kidney Forms an Unstable Hemiacetal Metabolite (M466/2) That Degrades to 4-Hydroxycrotonaldehyde, a Reactive and Cytotoxic Species. Chem Res Toxicol. 2015;28(1):103-115. doi: 10.1021/tx500380t
35. Demarco VG, Aroor A, Jia G, et al. Sodium Glucose Transporter Type 2 Inhibitor, Empagliflozin, Improves Vascular Stiffness in Female Diabetic Mice Independent of Blood Pressure Reduction [Poster 1954-P]; Poster presented at: ADA 76th Scientific Sessions 2016 June 10-14; New Orleans, LA, USA.
36. Benetti E, Mastrocola R, Vitarelli G, et al. Empagliflozin Protects against Diet-Induced NLRP-3 Inflammasome Activation and Lipid Accumulation. J Pharmacol Exp Ther. 2016;359(1):45-53. doi: 10.1124/jpet.116.235069
37. Gallo LA, Ward MS, Fotheringham AK, et al. Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice. Sci Rep. 2016;6:26428. doi: 10.1038/srep26428
38. Abassi Z, Leor J, Landa N, et al. OS 05-04 EMPAGLIFLOZIN EXERTS CARDIO-AND NEPHRO-PROTECTIVE EFFECTS IN COHEN-ROSENTHAL DIABETIC HYPERTENSIVE RATS. J hypertens. 2016;34:e58-e59.
39. Gangadharan Komala M, Gross S, Mudaliar H, et al. Inhibition of kidney proximal tubular glucose reabsorption does not prevent against diabetic nephropathy in type 1 diabetic eNOS knockout mice. PLoS One. 2014;9(11):e108994. doi: 10.1371/journal.pone.0108994
40. Haring HU, Merker L, Seewaldt-Becker E, et al. Empagliflozin as add-on to metformin plus sulfonylurea in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care. 2013;36(11):3396-3404. doi: 10.2337/dc12-2673
41. Barnett AH, Mithal A, Manassie J, et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. The Lancet Diabetes & Endocrinology. 2014;2(5):369-384. doi: 10.1016/s2213-8587(13)70208-0
42. Cherney D, von Eynatten M, Lund SS et al. Sodium Glucose Cotransporter 2 (SGLT2) Inhibition with Empagliflozin Reduces Microalbuminuria in Patients with Type-2 Diabetes [Poster 1125-P]; Poster presented at: ADA 74th Scientific Sessions 2014 June 13–17; San Francisco, CA, USA.
43. Cherney D, Lund SS, Perkins BA, et al. The effect of sodium glucose cotransporter 2 inhibition with empagliflozin on microalbuminuria and macroalbuminuria in patients with type 2 diabetes. Diabetologia. 2016;59(9):1860-1870. doi: 10.1007/s00125-016-4008-2
44. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117-2128. doi: 10.1056/NEJMoa1504720
45. Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med. 2016;375(4):323-334. doi: 10.1056/NEJMoa1515920
46. D’Emden M, Bergenstal R, Lutomirsky MM, Wanner C. Effect of Empagliflozin On Nephropathy in Subgroups by Age: Results From Empa-Reg Outcome. Nephrology. 2016;21:59-59.
47. Klimontov VV, Bgatova NP, Gavrilova JuS, et al. Linagliptin allieviates renal injury in a model of type 2 diabetic nephropathy. Diabetes. 2015;64(Suppl1):A144. doi 10.2337/db15-386-741
48. Корбут А.И., Климонтов В.В. Терапия, основанная на инкретинах: почечные эффекты // Сахарный диабет. – 2016. – Т. 19. – №1. – C. 53-63. [Korbut AI, Klimontov VV. Incretin-based therapy: renal effects. Diabetes mellitus. 2016;19(1):53-63. (In Russ).] doi: 10.14341/DM7727
49. Cherney DZ, Perkins BA, Soleymanlou N, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129(5):587-597. doi: 10.1161/CIRCULATIONAHA.113.005081
50. Skrtic M, Cherney DZ. Sodium-glucose cotransporter-2 inhibition and the potential for renal protection in diabetic nephropathy. Curr Opin Nephrol Hypertens. 2015;24(1):96-103. doi: 10.1097/MNH.0000000000000084
51. Lytvyn Y, Skrtic M, Yang GK, et al. Glycosuria-mediated urinary uric acid excretion in patients with uncomplicated type 1 diabetes mellitus. Am J Physiol Renal Physiol. 2015;308(2):F77-83. doi: 10.1152/ajprenal.00555.2014
52. Шестакова М.В., Бойцов С.А., Драпкина О.М., и др. Резолюция промежуточного совещания экспертного совета по результатам исследования EMPA-REG OUTCOME // Рациональная фармакотерапия в кардиологии. – 2016. – Т. 12. – №2. – С. 186-190. [Shestakova MV, Boytsov SA, Drapkina OM, et al. The interim experts’ council resolution on the EMPA-REG OUTCOME trial issues. Rational Pharmacotherapy in Cardiology. 2016;12(2):186-190. (In Russ).] doi: 10.20996/1819-6446-2016-12-2-186-190
Supplementary files
|
1. Рис. 1. Структурные формулы ингибиторов SGLT2. Адаптировано из [23]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(349KB)
|
Indexing metadata ▾ |
|
2. Рис. 2. Динамика изменения СКФ в течение исследования EMPA-REG OUTCOME. Адаптировано из [43]. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(86KB)
|
Indexing metadata ▾ |
|
3. Рис. 3. Потенциальные механизмы нефропротективного действия эмпаглифлозина. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(105KB)
|
Indexing metadata ▾ |
Review
For citations:
Korbut A.I., Klimontov V.V. Empagliflozin: a new strategy for nephroprotection in diabetes. Diabetes mellitus. 2017;20(1):75-84. (In Russ.) https://doi.org/10.14341/DM8005

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).