Preview

Diabetes mellitus

Advanced search

Insulin resistance: the conflict between biological settings of energy metabolism and human lifestyle (a glance at the problem from evolutionary viewpoint)

https://doi.org/10.14341/DM7959

Abstract

A biological function of the phylogenetically late humoral mediator insulin is to provide energy substrates for locomotion, i.e. movement resulting from contraction of striated muscles. Insulin is able to meet this evolutionary demand of an organism by means of the effective ATP production in the mitochondria. Exogenous fatty acids, optimised endogenous fatty acids produced from glucose and glucose itself are the major substrates for ATP synthesis. Cells stimulated by insulin produce ω-9 С18:1 oleic acid from glucose. This fatty acid is oxidised by the mitochondria at a higher rate than exogenous and endogenous C16:0 palmitic fatty acid. In the normal state of insulin system and mitochondria, the frequent cause of insulin resistance is the non-optimal properties of dietary fatty acids supplied for oxidation by the mitochondria. Dietary excess of saturated palmitic fatty acid over monogenic oleic fatty acid causes insulin resistance to develop. Insulin resistance syndrome is the condition of in vivo energy deficiency and insufficient production of ATP for the realisation of the biological adaptation and compensation. Insulin effectively inhibits lipolysis only in phylogenetically late subcutaneous adipocytes but not in phylogenetically early visceral fat cells of the omentum. Discrepancy in the regulation of energy substrate metabolism against the background of a ‘relative biological perfection’ of higher mammals is the aetiological basis of insulin resistance.

About the Authors

Vladimir Nicolaevich Titov
Cardiology Research and Production Complex, Moscow, Russia
Russian Federation
PhD
Competing Interests: No conflict of interest


Vladimir Pavlovich Shirinsky
Cardiology Research and Production Complex, Moscow, Russia
Russian Federation
MD, PhD
Competing Interests: No conflict of interest


References

1. Титов В.Н. Филогенетическая теория общей патологии. Патогенез метаболических пандемий. Сахарный диабет. – М.: ИНФРА-М; 2014. [Titov VN. Filogeneticheskaya teoriya obshchei patologii. Patogenez metabolicheskikh pandemii. Sakharnyi diabet. Moscow: INFRA-M; 2014. (In Russ).]

2. Шноль С.Э. Физико-химические факторы биологической эволюции. – М.: Наука; 1979. [Shnol’ SE. Fiziko-khimicheskie faktory biologicheskoi evolyutsii. Moscow: Nauka; 1979. (In Russ)]

3. Hamerly T, Tripet B, Wurch L, et al. Characterization of Fatty Acids in Crenarchaeota by GC-MS and NMR. Archaea. 2015;2015:472726. doi: 10.1155/2015/472726

4. Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest. 2004;114(2):147-152. doi: 10.1172/JCI22422

5. Montanaro MA, Bernasconi AM, Gonzalez MS, et al. Effects of fenofibrate and insulin on the biosynthesis of unsaturated fatty acids in streptozotocin diabetic rats. Prostaglandins Leukot Essent Fatty Acids. 2005;73(5):369-378. doi: 10.1016/j.plefa.2005.06.004

6. Shimano H. Sterol regulatory element-binding protein family as global regulators of lipid synthetic genes in energy metabolism. Vitamins and hormones. 2002;65:167-194. doi: 10.1016/s0083-6729(02)65064-2

7. Waters KM, Ntambi JM. Insulin and dietary fructose induce stearoyl-CoA desaturase 1 gene expression of diabetic mice. J Biol Chem. 1994;269(44):27773-27777.

8. DeLany JP, Windhauser MM, Champagne CM, et al. Differential oxidation of individual dietary fatty acids in humans. Am J Clin Nutr. 2000;72(4):905-911.

9. Jones PJ, Pencharz PB, Clandinin MT. Whole body oxidation of dietary fatty acids: implications for energy utilization. Am J Clin Nutr. 1985;42(5):769-777.

10. Pinnick KE, Neville MJ, Fielding BA, et al. Gluteofemoral adipose tissue plays a major role in production of the lipokine palmitoleate in humans. Diabetes. 2012;61(6):1399-1403. doi: 10.2337/db11-1810

11. Лисицын Д.М., Разумовский С.Д., Тишенин М.А., и др. Кинетические параметры окисления озоном индивидуальных жирных кислот. // Бюллетень экспериментальной биологии и медицины. – 2004. – Т. 138. – №11 – С. 517-519. [Lisitsyn D, Razumovskii S, Tishenin M, et al. Kinetic parameters of oxidation of individual fatty acids with ozone. Bulletin of Experimental Biology and Medicine. 2004;138(11):517-519. (In Russ).]

12. Панков Ю.А. Адипогенная функция и другие биологические эффекты инсулина. // Биомедицинская химия. – 2016. – Т. 62. – №1 – С. 5-13. [Pankov Y. Adipogenic function and other biologic effects of insulin. Biomeditsinskaya Khimiya. 2016;62(1):5-13. (In Russ).]

13. Giorgino F, Laviola L, Eriksson JW. Regional differences of insulin action in adipose tissue: insights from in vivo and in vitro studies. Acta Physiol Scand. 2005;183(1):13-30. doi: 10.1111/j.1365-201X.2004.01385.x

14. Титов В.Н., Рожкова Т.А., Амелюшкина В.А. Жирные кислоты, триглицериды, гипертриглицеридемия, гипергликемия и инсулин. – М.: ИНФРА; 2016. [Titov VN, Rozhkova TA, Amelyushkina VA. Zhirnye kisloty, triglitseridy, gipertriglitseridemiya, giperglikemiya i insulin. Moscow: INFRA; 2016. (In Russ).]

15. Stamatikos AD, Paton CM. Role of stearoyl-CoA desaturase-1 in skeletal muscle function and metabolism. Am J Physiol Endocrinol Metab. 2013;305(7):E767-775. doi: 10.1152/ajpendo.00268.2013

16. Hunter JE, Zhang J, Kris-Etherton PM. Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: a systematic review. Am J Clin Nutr.2010;91(1):46-63. doi: 10.3945/ajcn.2009.27661

17. Brown JM, Rudel LL. Stearoyl-coenzyme A desaturase 1 inhibition and the metabolic syndrome: considerations for future drug discovery. Curr Opin Lipidol. 2010;21(3):192-197. doi: 10.1097/MOL.0b013e32833854ac

18. Liu X, Miyazaki M, Flowers MT, et al. Loss of Stearoyl-CoA desaturase-1 attenuates adipocyte inflammation: effects of adipocyte-derived oleate. Arterioscler Thromb Vasc Biol. 2010;30(1):31-38. doi: 10.1161/ATVBAHA.109.195636

19. Ntambi JM, Miyazaki M, Dobrzyn A. Regulation of stearoyl-CoA desaturase expression. Lipids. 2004;39(11):1061-1065. doi: 10.1007/s11745-004-1331-2

20. Dobrzyn A, Dobrzyn P. Stearoyl-CoA desaturase--a new player in skeletal muscle metabolism regulation. J Physiol Pharmacol. 2006;57 Suppl 10:31-42.

21. Silbernagel G, Kovarova M, Cegan A, et al. High hepatic SCD1 activity is associated with low liver fat content in healthy subjects under a lipogenic diet. J Clin Endocrinol Metab. 2012;97(12):E2288-2292. doi: 10.1210/jc.2012-2152

22. Peter A, Cegan A, Wagner S, et al. Hepatic lipid composition and stearoyl-coenzyme A desaturase 1 mRNA expression can be estimated from plasma VLDL fatty acid ratios. Clin Chem.2009;55(12):2113-2120. doi: 10.1373/clinchem.2009.127274

23. Stefan N, Peter A, Cegan A, et al. Low hepatic stearoyl-CoA desaturase 1 activity is associated with fatty liver and insulin resistance in obese humans. Diabetologia. 2008;51(4):648-656. doi: 10.1007/s00125-008-0938-7

24. Kim YC, Gomez FE, Fox BG, et al. Differential regulation of the stearoyl-CoA desaturase genes by thiazolidinediones in 3T3-L1 adipocytes. J Lipid Res. 2000;41(8):1310-1316.

25. Титов В.Н. Филогенетическая теория общей патологии. Патогенез болезней цивилизации. Атеросклероз. – М.: ИНФРА-М; 2014. [Titov VN. Filogeneticheskaya teoriya obshchei patologii.Patogenez boleznei tsivilizatsii. Ateroskleroz. Moscow: INFRA-M; 2014. (In Russ).]


Supplementary files

Review

For citations:


Titov V.N., Shirinsky V.P. Insulin resistance: the conflict between biological settings of energy metabolism and human lifestyle (a glance at the problem from evolutionary viewpoint). Diabetes mellitus. 2016;19(4):286-294. (In Russ.) https://doi.org/10.14341/DM7959

Views: 9936


ISSN 2072-0351 (Print)
ISSN 2072-0378 (Online)