Десять новых мишеней для разработки лекарственных средств для лечения СД2 и метаболического синдрома
https://doi.org/10.14341/DM20151101-109
Аннотация
, фруктозо-1,6-бисфосфатазы, гликогенфосфорилазы, SIRT1, DGAT-1 и GPR119. Представленные данные свидетельствуют о перспективности фармакологического воздействия на перечисленные мишени с целью создания противодиабетических средств.
Ключевые слова
Об авторах
Иван Николаевич ТюренковГБОУ ВПО "Волгоградский государственный медицинский университет", Волгоград
Россия
чл.-корр. РАН, д.м.н., профессор, зав. кафедрой фармакологии и биофармации ФУВ
Денис Владимирович Куркин
ГБОУ ВПО "Волгоградский государственный медицинский университет", Волгоград
Россия
к.ф.н., ассистент кафедры фармакологии и биофармации ФУВ
Елена Владимировна Волотова
ГБОУ ВПО "Волгоградский государственный медицинский университет", Волгоград
Россия
к.м.н., ассистент кафедры фармакологии и биофармации ФУВ
Дмитрий Александрович Бакулин
ГБОУ ВПО "Волгоградский государственный медицинский университет", Волгоград
Россия
ассистент кафедры фармакологии и биофармации ФУВ
Елена Михайловна Ломкина
ГБОУ ВПО "Волгоградский государственный медицинский университет", Волгоград
Россия
ассистент кафедры фармакологии и биофармации ФУВ
Список литературы
1. Дедов И.И., Шестакова М.В., Александров А.А., и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Под редакцией И.И. Дедова, М.В. Шестаковой (6-й выпуск). // Сахарный диабет. – 2013. – №.1 (приложение 1). – С. 1–120. [Dedov II, Shestakova MV, Aleksandrov AA, et al. Standards of specialized diabetes care. Edited by Dedov II, Shestakova MV (6th edition). Diabetes mellitus. 2013;16(1S):1–120.] doi: 10.14341/DM20131S1-121
2. Липатов Д.В., Александрова В.К., Атарщиков Д.С. и др. Эпидемиология и регистр диабетической ретинопатии в Российской Федерации. // Сахарный диабет. – 2014. – №1. – С.:4–7. [Lipatov DV, Aleksandrova VK, Atarshchikov DS, et al. Current report from Russian Diabetic Retinopathy Register. Diabetes mellitus. 2014;17(1):4–7.] doi: 10.14341/DM201414-7
3. Бублик Е.В., Галстян Г.Р. Эпидемиология и патогенетические механизмы развития синдрома диабетической стопы у пациентов с терминальной стадией хронической почечной недостаточности, находящихся на диализе. // Сахарный диабет. – 2007. – №3. – С.10–18. [Bublik EV, Galstyan GR. Epidemiologiya i patogeneticheskiefaktory sindroma diabeticheskoy stopyu bol'nykh s terminal'noy stadieykhronicheskoy pochechnoy nedostatochnosti,nakhodyashchikhsya na dialize. Diabetes mellitus. 2007;10(3):10–16.] doi: 10.14341/2072-0351-5991
4. Чугунова Л.А., Камчатнов П.Р., Чугунов А.В., и др. Цереброваскулярные заболевания и сахарный диабет 2 типа. // Сахарный диабет. – 2006. – №1. – С.34–40. [Chugunova LA, Kamchatnov PR, Chugunov AV, Shestakova MV. Tserebrovaskulyarnye zabolevaniyai sakharnyy diabet 2 tipa. Diabetes mellitus. 2006;9(1):34–40.] doi: 10.14341/2072-0351-5378
5. Дедов И.И. Инновационные технологии в лечении и профилактике сахарного диабета и его осложнений. // Сахарный диабет. – 2013. – №3. – С.4–10. [Dedov II. Novel technologies for the treatment and prevention of diabetes mellitus and its complications. Diabetes mellitus. 2013;16(3):4–10.] doi: 10.14341/2072-0351-811
6. Шварц В.Я. Новый принцип лечения сахарного диабета 2-го типа путем стимуляции глюкозурии. // Проблемы эндокринологии. – 2012. – Т. 58. – №4. – С.54–57. [Shvarts VI. A new principle of the treatment of type 2 diabetes mellitus by stimulation of glucosuria. Problemy Endokrinologii. 2012;58(4):54–57.] doi: 10.14341/probl201258454-57
7. Ушкалова Е.А. Новый класс антидиабетических препаратов – ингибиторы натрий-глюкозных котранспортеров. // Фарматека. – 2013. – №16. – С.33–36. [Ushkalova E.A. New class of antidiabetic drugs – sodium- glucose cotransporter inhibitors. // Farmateka. – 2013;(16):33–36.]
8. Anderson A, Walker B. 11β-HSD1 Inhibitors for the Treatment of Type 2 Diabetes and Cardiovascular Disease. Drugs. 2013;73(13):1385–1393. doi: 10.1007/s40265-013-0112-5
9. Barf T, Vallgårda J, Emond R, et al. Arylsulfonamidothiazoles as a New Class of Potential Antidiabetic Drugs. Discovery of Potent and Selective Inhibitors of the 11β-Hydroxysteroid Dehydrogenase Type 1. Journal of Medicinal Chemistry. 2002;45(18):3813–3815. doi: 10.1021/jm025530f
10. Véniant MM, Hale C, Hungate RW, et al. Discovery of a Potent, Orally Active 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitor for Clinical Study: Identification of (S)-2-((1S,2S,4R)-Bicyclo[2.2.1]heptan-2-ylamino)-5-isopropyl-5-methylthiazol-4(5H)-one (AMG 221). Journal of Medicinal Chemistry. 2010;53(11):4481–4487. doi: 10.1021/jm100242d
11. Ткачук В.А., Воротников А.В. Молекулярные механизмы развития резистентности к инсулину. // Сахарный диабет. – 2014. – №2. – С.29–40. [Tkachuk VA, Vorotnikov AV. Molecular Mechanisms of Insulin Resistance Development. Diabetes mellitus. 2014;17(2):29–40.] doi: 10.14341/DM2014229-40
12. Yang R, Barouch LA. Leptin signaling and obesity: cardiovascular consequences. Circulation research. 2007;101(6):545–559. doi: 10.1161/CIRCRESAHA.107.156596
13. Спасов АА, Петров ВИ, Чепляева НИ, Ленская КВ. Фундаментальные основы поиска лекарственных средств для терапии сахарного диабета 2-го типа. // Вестник Российской Академии медицинских наук. – 2013. – №2. – С.43–49. [Spasov AA, Petrov VI, Chepljaeva NI, et al. Fundamental bases of search of medicines for therapy of a diabetes mellitus type 2. Vestnik Rossiĭskoĭ akademii meditsinskikh nauk. 2013;(2):43–49.]
14. Cho H. Protein tyrosine phosphatase 1B (PTP1B) and obesity. Vitamins and hormones. 2013;91:405–424. doi: 10.1016/B978-0-12-407766-9.00017-1
15. Voss MD, Zoller G, Matter H, et al. Discovery and pharmacological characterization of SAR707 as novel and selective small molecule inhibitor of stearoyl-CoA desaturase (SCD1). European journal of pharmacology. 2013;707(1–3):140–146. doi: 10.1016/j.ejphar.2013.03.019
16. Ntambi JM, Miyazaki M, Stoehr JP, et al. Loss of stearoyl–CoA desaturase-1 function protects mice against adiposity. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(17):11482–11486. doi: 10.1073/pnas.132384699
17. Sampath H, Flowers MT, Liu X, et al. Skin-specific deletion of stearoyl-CoA desaturase-1 alters skin lipid composition and protects mice from high fat diet-induced obesity. The Journal of biological chemistry. 2009;284(30):19961–19973. doi: 10.1074/jbc.M109.014225
18. Ramtohul YK, Black C, Chan CC, et al. SAR and optimization of thiazole analogs as potent stearoyl-CoA desaturase inhibitors. Bioorganic & medicinal chemistry letters. 2010;20(5):1593–1597. doi: 10.1016/j.bmcl.2010.01.083
19. Oballa RM, Belair L, Black WC, et al. Development of a liver-targeted stearoyl-CoA desaturase (SCD) inhibitor (MK-8245) to establish a therapeutic window for the treatment of diabetes and dyslipidemia. J Med Chem. 2011;54(14):5082–5096. doi: 10.1021/jm200319u
20. Maedler K, Sergeev P, Ris F, et al. Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. The Journal of clinical investigation. 2002;110(6):851–860. doi: 10.1172/JCI15318
21. Larsen CM, Faulenbach M, Vaag A, et al. Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes care. 2009;32(9):1663–1668. doi: 10.2337/dc09-0533
22. Erion MD, van Poelje PD, Dang Q, et al. MB06322 (CS-917): A potent and selective inhibitor of fructose 1,6-bisphosphatase for controlling gluconeogenesis in type 2 diabetes. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(22):7970–7975. doi: 10.1073/pnas.0502983102
23. van Poelje PD, Potter SC, Erion MD. Fructose-1, 6-bisphosphatase inhibitors for reducing excessive endogenous glucose production in type 2 diabetes. Handbook of experimental pharmacology. 2011(203):279–301. doi: 10.1007/978-3-642-17214-4_12
24. Freeman S, Bartlett JB, Convey G, et al. Sensitivity of glycogen phosphorylase isoforms to indole site inhibitors is markedly dependent on the activation state of the enzyme. British journal of pharmacology. 2006;149(6):775–785. doi: 10.1038/sj.bjp.0706925
25. Dang Q, Liu Y, Cashion DK, et al. Discovery of a Series of Phosphonic Acid-Containing Thiazoles and Orally Bioavailable Diamide Prodrugs That Lower Glucose in Diabetic Animals Through Inhibition of Fructose-1,6-Bisphosphatase. Journal of Medicinal Chemistry. 2011;54(1):153–165. doi: 10.1021/jm101035x
26. Floettmann E, Gregory L, Teague J, et al. Prolonged inhibition of glycogen phosphorylase in livers of Zucker Diabetic Fatty rats models human glycogen storage diseases. Toxicologic pathology. 2010;38(3):393–401. doi: 10.1177/0192623310362707
27. Vetterli L, Brun T, Giovannoni L, et al. Resveratrol Potentiates Glucose-stimulated Insulin Secretion in INS-1E β-Cells and Human Islets through a SIRT1-dependent Mechanism. The Journal of biological chemistry. 2011;286(8):6049–6060. doi: 10.1074/jbc.M110.176842
28. Purushotham A, Schug TT, Xu Q, et al. Hepatocyte-specific Deletion of SIRT1 Alters Fatty Acid Metabolism and Results in Hepatic Steatosis and Inflammation. Cell metabolism. 2009;9(4):327–338. doi: 10.1016/j.cmet.2009.02.006
29. Li Y, Xu S, Giles A, et al. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. The FASEB Journal. 2011;25(5):1664–1679. doi: 10.1096/fj.10-173492
30. Chalkiadaki A, Guarente L. High-Fat Diet Triggers Inflammation-Induced Cleavage of SIRT1 in Adipose Tissue To Promote Metabolic Dysfunction. Cell metabolism. 2012;16(2):180–188. doi: 10.1016/j.cmet.2012.07.003
31. Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005;2(2):105–117. doi: 10.1016/j.cmet.2005.07.001
32. Qiao L, Shao J. SIRT1 Regulates Adiponectin Gene Expression through Foxo1-C/Enhancer-binding Protein α Transcriptional Complex. Journal of Biological Chemistry. 2006;281(52):39915–39924. doi: 10.1074/jbc.M607215200
33. Sun C, Zhang F, Ge X, et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab. 2007;6(4):307–319. doi: 10.1016/j.cmet.2007.08.014
34. Спасов А.А., Самохина М.П., Буланов А.Е. Инкретины (физиология, патология, фармакология). // Вопросы биологической, медицинской и фармацевтической химии. 2009. – N4. – С.3–7. [Spasov A.A., Samokhina M.P., Bulanov A.E. Incretins – physiology, pathology and pharmacology. Voprosy biologicheskoĭ, medit︠s︡inskoĭ i farmat︠s︡evticheskoĭ khimii. 2009;(4):3–7.]
35. Романцова Т.И. Патогенетическое обоснование и эффективность применения вилдаглиптина у больных сахарным диабетом 2 типа. // Ожирение и метаболизм. – 2009. – №3. – С.16–26. [Romantsova TI. Pathogenetic substantiation and effectiveness of vildagliptin use inpatients with diabetes mellitus type 2. Obesity and metabolism. 2009;6(3):16–26.] doi: 10.14341/2071-8713-5241
36. Галстян Г.Р. Физиологическая роль инкретинов: перспективы лечения больных сахарным диабетом 2 типа. // Сахарный диабет. – 2006. – №4. – С.14–18. [Galstyan GR. Fiziologicheskaya rol' inkretinov:perspektivy lecheniya bol'nykhsakharnym diabetom 2 tipa. Diabetes mellitus. 2006;9(4):14–18.] doi: 10.14341/2072-0351-6183
37. Monami M, Cremasco F, Lamanna C, et al. Predictors of response to dipeptidyl peptidase-4 inhibitors: evidence from randomized clinical trials. Diabetes/metabolism research and reviews. 2011;27(4):362–372. doi: 10.1002/dmrr.1184
38. Li C-J, Liu X-J, Bai L, et al. Efficacy and safety of vildagliptin, Saxagliptin or Sitagliptin as add-on therapy in Chinese patients with type 2 diabetes inadequately controlled with dual combination of traditional oral hypoglycemic agents. Diabetology & Metabolic Syndrome. 2014;6:69–69. doi: 10.1186/1758-5996-6-69
39. Nauck MA, Vardarli I. Comparative evaluation of incretin-based antidiabetic medications and alternative therapies to be added to metformin in the case of monotherapy failure. Journal of Diabetes Investigation. 2010;1(1–2):24–36. doi: 10.1111/j.2040-1124.2010.00004.x
40. Wang T, Gou Z, Wang F, et al. Comparison of GLP-1 Analogues versus Sitagliptin in the Management of Type 2 Diabetes: Systematic Review and Meta-Analysis of Head-to-Head Studies. PloS one. 2014;9(8):e103798. doi: 10.1371/journal.pone.0103798
41. Mo XL, Yang Z, Tao YX. Targeting GPR119 for the potential treatment of type 2 diabetes mellitus. Progress in molecular biology and translational science. 2014;121:95–131. doi: 10.1016/B978-0-12-800101-1.00004-1
42. Zhang D, Leung PS. Potential roles of GPR120 and its agonists in the management of diabetes. Drug design, development and therapy. 2014;8:1013–1027. doi: 10.2147/DDDT.S53892
43. Ge H, Li X, Weiszmann J, et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology. 2008;149(9):4519–4526. doi: 10.1210/en.2008-0059
44. Pols TWH, Noriega LG, Nomura M, et al. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. Journal of hepatology. 2011;54(6):1263–1272. doi: 10.1016/j.jhep.2010.12.004
45. Defossa E, Wagner M. Recent developments in the discovery of FFA1 receptor agonists as novel oral treatment for type 2 diabetes mellitus. Bioorganic & medicinal chemistry letters. 2014;24(14):2991–3000. doi: 10.1016/j.bmcl.2014.05.019
46. Gao J, Tian L, Weng G, et al. Stimulating beta cell replication and improving islet graft function by GPR119 agonists. Transplant international: official journal of the European Society for Organ Transplantation. 2011;24(11):1124–1134. doi: 10.1111/j.1432-2277.2011.01332.x
47. Smith SJ, Cases S, Jensen DR, et al. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nature genetics. 2000;25(1):87–90. doi: 10.1038/75651
48. Chen HC. Enhancing energy and glucose metabolism by disrupting triglyceride synthesis: Lessons from mice lacking DGAT1. Nutrition & Metabolism. 2006;3:10–10. doi: 10.1186/1743-7075-3-10
49. Villanueva CJ, Monetti M, Shih M, et al. A Specific Role for Dgat1 in Hepatic Steatosis Due to Exogenous Fatty Acids. Hepatology (Baltimore, Md). 2009;50(2):434–442. doi: 10.1002/hep.22980
50. Stone SJ, Myers HM, Watkins SM, et al. Lipopenia and Skin Barrier Abnormalities in DGAT2-deficient Mice. Journal of Biological Chemistry. 2004;279(12):11767–11776. doi: 10.1074/jbc.M311000200
51. Zhang X-d, Yan J-w, Yan G-r, et al. Pharmacological inhibition of diacylglycerol acyltransferase 1 reduces body weight gain, hyperlipidemia, and hepatic steatosis in db/db mice. Acta Pharmacologica Sinica. 2010;31(11):1470–1477. doi: 10.1038/aps.2010.104
52. Pfefferkorn JA. Strategies for the design of hepatoselective glucokinase activators to treat type 2 diabetes. Expert opinion on drug discovery. 2013;8(3):319–330. doi: 10.1517/17460441.2013.748744
53. Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2014;7:241–253. doi: 10.2147/DMSO.S43731
54. Christensen M, Bagger JI, Vilsboll T, Knop FK. The Alpha-Cell as Target for Type 2 Diabetes Therapy. The review of diabetic studies: RDS. 2011;8(3):369–381. doi: 10.1900/RDS.2011.8.369
Дополнительные файлы
Рецензия
Для цитирования:
Тюренков И.Н., Куркин Д.В., Волотова Е.В., Бакулин Д.А., Ломкина Е.М. Десять новых мишеней для разработки лекарственных средств для лечения СД2 и метаболического синдрома. Сахарный диабет. 2015;18(1):101-109. https://doi.org/10.14341/DM20151101-109
For citation:
Tyurenkov I.N., Kurkin D.V., Volotova E.V., Bakulin D.A., Lomkina E.M. Drug discovery for type 2 diabetes mellitus and metabolic syndrome: ten novel biological targets. Diabetes mellitus. 2015;18(1):101-109. (In Russ.) https://doi.org/10.14341/DM20151101-109

Контент доступен под лицензией Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).